I gave up and decided to hack NounDomain instead. This seems to work… see if you can break it!
[spoiler][code]An thing can be recently matched.
To loop over the match list with (func - phrase thing -> nothing): (- LoopOverMatchList({func}–>1); -);
Include (-
[ LoopOverMatchList func i;
for (i = 0; i < number_matched; i++) {
indirect(func, match_list–>i);
}
];
-)
Suppression of disambiguation is a truth state that varies.
The suppression of disambiguation variable translates into I6 as “suppress_disambig”.
To suppress disambiguation: now suppression of disambiguation is true.
To allow disambiguation: now suppression of disambiguation is false.
To decide whether marking the match list: decide on whether or not the suppression of disambiguation is true.
Include (-
Global suppress_disambig = 0;
! Other than the creation of this one global variable, the only change to NounDomain is the insertion of a single line
[ NounDomain domain1 domain2 context
first_word i j k l answer_words marker;
#Ifdef DEBUG;
if (parser_trace >= 4) {
print " [NounDomain called at word ", wn, “^”;
print " ";
if (indef_mode) {
print "seeking indefinite object: ";
if (indef_type & OTHER_BIT) print "other ";
if (indef_type & MY_BIT) print "my ";
if (indef_type & THAT_BIT) print "that ";
if (indef_type & PLURAL_BIT) print "plural ";
if (indef_type & LIT_BIT) print "lit ";
if (indef_type & UNLIT_BIT) print "unlit ";
if (indef_owner ~= 0) print “owner:”, (name) indef_owner;
new_line;
print " number wanted: ";
if (indef_wanted == INDEF_ALL_WANTED) print “all”; else print indef_wanted;
new_line;
print " most likely GNAs of names: ", indef_cases, “^”;
}
else print “seeking definite object^”;
}
#Endif; ! DEBUG
match_length = 0; number_matched = 0; match_from = wn;
SearchScope(domain1, domain2, context);
#Ifdef DEBUG;
if (parser_trace >= 4) print " [ND made ", number_matched, " matches]^";
#Endif; ! DEBUG
wn = match_from+match_length;
! If nothing worked at all, leave with the word marker skipped past the
! first unmatched word...
if (number_matched == 0) { wn++; rfalse; }
! Suppose that there really were some words being parsed (i.e., we did
! not just infer). If so, and if there was only one match, it must be
! right and we return it...
if (match_from <= num_words) {
if (number_matched == 1) {
i=match_list-->0;
return i;
}
! ...now suppose that there was more typing to come, i.e. suppose that
! the user entered something beyond this noun. If nothing ought to follow,
! then there must be a mistake, (unless what does follow is just a full
! stop, and or comma)
if (wn <= num_words) {
i = NextWord(); wn--;
if (i ~= AND1__WD or AND2__WD or AND3__WD or comma_word
or THEN1__WD or THEN2__WD or THEN3__WD
or BUT1__WD or BUT2__WD or BUT3__WD) {
if (lookahead == ENDIT_TOKEN) rfalse;
}
}
}
! Now look for a good choice, if there's more than one choice...
number_of_classes = 0;
if (number_matched == 1) i = match_list-->0;
if (number_matched > 1) {
i = true;
if (number_matched > 1)
for (j=0 : j<number_matched-1 : j++)
if (Identical(match_list-->j, match_list-->(j+1)) == false)
i = false;
if (i) dont_infer = true;
i = Adjudicate(context);
if (i == -1) rfalse;
if (i == 1) rtrue; ! Adjudicate has made a multiple
! object, and we pass it on
}
! If i is non-zero here, one of two things is happening: either
! (a) an inference has been successfully made that object i is
! the intended one from the user's specification, or
! (b) the user finished typing some time ago, but we've decided
! on i because it's the only possible choice.
! In either case we have to keep the pattern up to date,
! note that an inference has been made and return.
! (Except, we don't note which of a pile of identical objects.)
if (i ~= 0) {
if (dont_infer) return i;
if (inferfrom == 0) inferfrom=pcount;
pattern-->pcount = i;
return i;
}
! This is the only line changed in NounDomain:
if (suppress_disambig) return REPARSE_CODE;
! If we get here, there was no obvious choice of object to make. If in
! fact we've already gone past the end of the player's typing (which
! means the match list must contain every object in scope, regardless
! of its name), then it's foolish to give an enormous list to choose
! from - instead we go and ask a more suitable question...
if (match_from > num_words) jump Incomplete;
! Now we print up the question, using the equivalence classes as worked
! out by Adjudicate() so as not to repeat ourselves on plural objects...
BeginActivity(ASKING_WHICH_DO_YOU_MEAN_ACT);
if (ForActivity(ASKING_WHICH_DO_YOU_MEAN_ACT)) jump SkipWhichQuestion;
j = 1; marker = 0;
for (i=1 : i<=number_of_classes : i++) {
while (((match_classes-->marker) ~= i) && ((match_classes-->marker) ~= -i))
marker++;
if (match_list-->marker hasnt animate) j = 0;
}
if (j) L__M(##Miscellany, 45); else L__M(##Miscellany, 46);
j = number_of_classes; marker = 0;
for (i=1 : i<=number_of_classes : i++) {
while (((match_classes-->marker) ~= i) && ((match_classes-->marker) ~= -i)) marker++;
k = match_list-->marker;
if (match_classes-->marker > 0) print (the) k; else print (a) k;
if (i < j-1) print (string) COMMA__TX;
if (i == j-1) {
#Ifdef SERIAL_COMMA;
if (j ~= 2) print ",";
#Endif; ! SERIAL_COMMA
print (string) OR__TX;
}
}
L__M(##Miscellany, 57);
.SkipWhichQuestion; EndActivity(ASKING_WHICH_DO_YOU_MEAN_ACT);
! ...and get an answer:
.WhichOne;
#Ifdef TARGET_ZCODE;
for (i=2 : i<INPUT_BUFFER_LEN : i++) buffer2->i = ’ ';
#Endif; ! TARGET_ZCODE
answer_words=Keyboard(buffer2, parse2);
! Conveniently, parse2-->1 is the first word in both ZCODE and GLULX.
first_word = (parse2-->1);
! Take care of "all", because that does something too clever here to do
! later on:
if (first_word == ALL1__WD or ALL2__WD or ALL3__WD or ALL4__WD or ALL5__WD) {
if (context == MULTI_TOKEN or MULTIHELD_TOKEN or MULTIEXCEPT_TOKEN or MULTIINSIDE_TOKEN) {
l = multiple_object-->0;
for (i=0 : i<number_matched && l+i<MATCH_LIST_WORDS : i++) {
k = match_list-->i;
multiple_object-->(i+1+l) = k;
}
multiple_object-->0 = i+l;
rtrue;
}
L__M(##Miscellany, 47);
jump WhichOne;
}
! Look for a comma, and interpret this as a fresh conversation command
! if so:
for (i=1 : i<=answer_words : i++)
if (WordFrom(i, parse2) == comma_word) {
VM_CopyBuffer(buffer, buffer2);
jump RECONSTRUCT_INPUT;
}
! If the first word of the reply can be interpreted as a verb, then
! assume that the player has ignored the question and given a new
! command altogether.
! (This is one time when it's convenient that the directions are
! not themselves verbs - thus, "north" as a reply to "Which, the north
! or south door" is not treated as a fresh command but as an answer.)
#Ifdef LanguageIsVerb;
if (first_word == 0) {
j = wn; first_word = LanguageIsVerb(buffer2, parse2, 1); wn = j;
}
#Endif; ! LanguageIsVerb
if (first_word ~= 0) {
j = first_word->#dict_par1;
if ((0 ~= j&1) && ~~LanguageVerbMayBeName(first_word)) {
VM_CopyBuffer(buffer, buffer2);
jump RECONSTRUCT_INPUT;
}
}
! Now we insert the answer into the original typed command, as
! words additionally describing the same object
! (eg, > take red button
! Which one, ...
! > music
! becomes "take music red button". The parser will thus have three
! words to work from next time, not two.)
#Ifdef TARGET_ZCODE;
k = WordAddress(match_from) - buffer; l=buffer2->1+1;
for (j=buffer + buffer->0 - 1 : j>=buffer+k+l : j-- ) j->0 = 0->(j-l);
for (i=0 : i<l : i++) buffer->(k+i) = buffer2->(2+i);
buffer->(k+l-1) = ' ';
buffer->1 = buffer->1 + l;
if (buffer->1 >= (buffer->0 - 1)) buffer->1 = buffer->0;
#Ifnot; ! TARGET_GLULX
k = WordAddress(match_from) - buffer;
l = (buffer2-->0) + 1;
for (j=buffer+INPUT_BUFFER_LEN-1 : j>=buffer+k+l : j-- ) j->0 = j->(-l);
for (i=0 : i<l : i++) buffer->(k+i) = buffer2->(WORDSIZE+i);
buffer->(k+l-1) = ' ';
buffer-->0 = buffer-->0 + l;
if (buffer-->0 > (INPUT_BUFFER_LEN-WORDSIZE)) buffer-->0 = (INPUT_BUFFER_LEN-WORDSIZE);
#Endif; ! TARGET_
! Having reconstructed the input, we warn the parser accordingly
! and get out.
.RECONSTRUCT_INPUT;
num_words = WordCount();
wn = 1;
#Ifdef LanguageToInformese;
LanguageToInformese();
! Re-tokenise:
VM_Tokenise(buffer,parse);
#Endif; ! LanguageToInformese
num_words = WordCount();
players_command = 100 + WordCount();
actors_location = ScopeCeiling(player);
FollowRulebook(Activity_after_rulebooks-->READING_A_COMMAND_ACT, true);
return REPARSE_CODE;
! Now we come to the question asked when the input has run out
! and can't easily be guessed (eg, the player typed "take" and there
! were plenty of things which might have been meant).
.Incomplete;
if (context == CREATURE_TOKEN) L__M(##Miscellany, 48);
else L__M(##Miscellany, 49);
#Ifdef TARGET_ZCODE;
for (i=2 : i<INPUT_BUFFER_LEN : i++) buffer2->i=' ';
#Endif; ! TARGET_ZCODE
answer_words = Keyboard(buffer2, parse2);
first_word=(parse2-->1);
#Ifdef LanguageIsVerb;
if (first_word==0) {
j = wn; first_word=LanguageIsVerb(buffer2, parse2, 1); wn = j;
}
#Endif; ! LanguageIsVerb
! Once again, if the reply looks like a command, give it to the
! parser to get on with and forget about the question...
if (first_word ~= 0) {
j = first_word->#dict_par1;
if (0 ~= j&1) {
VM_CopyBuffer(buffer, buffer2);
return REPARSE_CODE;
}
}
! ...but if we have a genuine answer, then:
!
! (1) we must glue in text suitable for anything that's been inferred.
if (inferfrom ~= 0) {
for (j=inferfrom : j<pcount : j++) {
if (pattern-->j == PATTERN_NULL) continue;
#Ifdef TARGET_ZCODE;
i = 2+buffer->1; (buffer->1)++; buffer->(i++) = ' ';
#Ifnot; ! TARGET_GLULX
i = WORDSIZE + buffer-->0;
(buffer-->0)++; buffer->(i++) = ' ';
#Endif; ! TARGET_
#Ifdef DEBUG;
if (parser_trace >= 5)
print "[Gluing in inference with pattern code ", pattern-->j, "]^";
#Endif; ! DEBUG
! Conveniently, parse2-->1 is the first word in both ZCODE and GLULX.
parse2-->1 = 0;
! An inferred object. Best we can do is glue in a pronoun.
! (This is imperfect, but it's very seldom needed anyway.)
if (pattern-->j >= 2 && pattern-->j < REPARSE_CODE) {
PronounNotice(pattern-->j);
for (k=1 : k<=LanguagePronouns-->0 : k=k+3)
if (pattern-->j == LanguagePronouns-->(k+2)) {
parse2-->1 = LanguagePronouns-->k;
#Ifdef DEBUG;
if (parser_trace >= 5)
print "[Using pronoun '", (address) parse2-->1, "']^";
#Endif; ! DEBUG
break;
}
}
else {
! An inferred preposition.
parse2-->1 = VM_NumberToDictionaryAddress(pattern-->j - REPARSE_CODE);
#Ifdef DEBUG;
if (parser_trace >= 5)
print "[Using preposition '", (address) parse2-->1, "']^";
#Endif; ! DEBUG
}
! parse2-->1 now holds the dictionary address of the word to glue in.
if (parse2-->1 ~= 0) {
k = buffer + i;
#Ifdef TARGET_ZCODE;
@output_stream 3 k;
print (address) parse2-->1;
@output_stream -3;
k = k-->0;
for (l=i : l<i+k : l++) buffer->l = buffer->(l+2);
i = i + k; buffer->1 = i-2;
#Ifnot; ! TARGET_GLULX
k = Glulx_PrintAnyToArray(buffer+i, INPUT_BUFFER_LEN-i, parse2-->1);
i = i + k; buffer-->0 = i - WORDSIZE;
#Endif; ! TARGET_
}
}
}
! (2) we must glue the newly-typed text onto the end.
#Ifdef TARGET_ZCODE;
i = 2+buffer->1; (buffer->1)++; buffer->(i++) = ' ';
for (j=0 : j<buffer2->1 : i++,j++) {
buffer->i = buffer2->(j+2);
(buffer->1)++;
if (buffer->1 == INPUT_BUFFER_LEN) break;
}
#Ifnot; ! TARGET_GLULX
i = WORDSIZE + buffer-->0;
(buffer-->0)++; buffer->(i++) = ' ';
for (j=0 : j<buffer2-->0 : i++,j++) {
buffer->i = buffer2->(j+WORDSIZE);
(buffer-->0)++;
if (buffer-->0 == INPUT_BUFFER_LEN) break;
}
#Endif; ! TARGET_
! (3) we fill up the buffer with spaces, which is unnecessary, but may
! help incorrectly-written interpreters to cope.
#Ifdef TARGET_ZCODE;
for (: i<INPUT_BUFFER_LEN : i++) buffer->i = ' ';
#Endif; ! TARGET_ZCODE
return REPARSE_CODE;
]; ! end of NounDomain
-) instead of “Noun Domain” in “Parser.i6t”.
To mark (item - an object) as recently matched (this is marking snippet matches):
Now item is recently matched.
Instead of asking someone about:
showme the topic understood;
mark “[any thing]” that matches the topic understood;
showme the topic understood;
showme the topic understood as a number;
showme the list of recently matched things;
Marking whether objects match is a truth state that varies.
To mark (T - a topic) that matches (snip - a snippet):
Now everything is not recently matched;
say “starting matching.”;
suppress disambiguation;
if snip matches T, loop over the match list with marking snippet matches;
allow disambiguation;
say “done matching.”;
A turn sequence rule when marking the match list (this is the stop the turn sequence when marking whether objects match rule):
rule fails.
The stop the turn sequence when marking whether objects match rule is listed before the every turn stage rule in the turn sequence rules.
To decide which number is (snip - a snippet) as a number: (- {snip} -);
Every turn: say “We made it to the every turn stage.”;
After reading a command: showme the player’s command;
Test is a room.
Bob is a man in Test.
There is a blue ball in test. There is a green ball in test.
Test me with “actions/ask Bob about ball/blue/ask bob about blue ball”[/code][/spoiler]