
A simplified schema of action-processing rules and rulebooks

Rulebook Rule Routine Routine Rulebook Rule Routine Rulebook Rule
Rulebook

(specific bold)
if rulebook ends…
(default in bold)

ACTION
outcome ¤ (stage rule returns)

TSR GenerateAction BeginAction ActionPrimitive APR--> *Before stage BEFORE Rule succeeds SUCCESS true or false
 | <-----rt/f | Rule fails Failure
 | | Make no decision (SUCCESS)
 | | ..instead/stop ±

 (if meta (out of world)) |---> *Instead stage INSTEAD Rule succeeds SUCCESS true or false
 | | Rule fails Failure
 | | Make no decision (SUCCESS)
 | | ..instead/stop ±
 |---------------------------> DSAPR--> #actions_table-->(action+1) SAPR----> § Check stage CHECK Rule succeeds SUCCESS 2 or false (2 is true)
 <----- rtrue | Rule fails Failure

| Make no decision (SUCCESS)
| ..instead/stop ±
|---------> ` Carry out stage CARRY OUT Rule succeeds (SUCCESS) false => no outcome

The specific action-processing rulebooks | Rule fails (SUCCESS)
(the specific check rulebook, specific carry out rulebook | Make no decision (SUCCESS)
and specific report rulebook) are rulebook variables | ..instead/stop ± (SUCCESS)
set at the start of the specific action rulebook |---------> *After stage AFTER Rule succeeds SUCCESS true or false
according to the action underway | Rule fails Failure
e.g. for a Take action, the Check taking rulebook etc. | Make no decision (SUCCESS)

| ..instead/stop ±
|---------> `Report stage REPORT Rule succeeds (SUCCESS) false => no outcome

TSR - turn sequence rules | Rule fails (SUCCESS)
APR - action-processing rules | Make no decision (SUCCESS)
DSAPR - descend to specific action processing rule | ..instead/stop ± (SUCCESS)
SAPR - specific action-processing rules |---------> Action succeeds** SUCCESS true => ends rulebook in success

± decide this rulebook, with success/failure/no outcome as decided by the rule/action just called, or by the last preceding rule
* (abides by the associated rule book) e.g. try looking instead / follow the inedible item rules instead. / try looking; stop the action.
§ (anonymously abides by the associated rulebook) NB follow <rules ending in no outcome> instead will, unlike `make no decision', immediately end APR and the action with no outcome
` (follows the associated rule book) (This means, in contrast to an explicit 'make no decision' ending, that the action, not having succeeded, will subsequently return false to 'If we have…')

** this rule ensures that if no other rulebook makes a decision, (or stops the rulebook with no outcome) SAPR succeeds by default
¤ bracketed outcomes are those which will ensue if no subsequent and this result feeds back via DSAPR +/- APR to ActionPrimitive(), so that the action is logged as having succeeded at least once and 'if we have…' becomes true.
 rule makes a decision

#actions_table is a compiler-generated constant pointer to the game file's action table- also a creation of the compiler
The specific entry for an action calls the relevant VerbSub(), which after setting action parameters for meta , keep_silent , and the action-specific
 rulebooks for Check <action>, Carry out <action>, Report <action> , goes on to call the SpecificActionProcessingRulebook.

bracketed results (SUCCESS) indicate the outcome of the action if no subsequent rulebook intervenes by making a decision (by returning true)
Note that BEFORE, INSTEAD, CHECK, AFTER stage rules can decide the action, but not CARRY OUT or REPORT (which both always return false)

