

ZILF Reference Guide
Henrik Åsman et al.

Version 0.1

2023-09-19

Copyright (C) 2020-2023 Henrik Åsman

Copying and distribution of this file, with or without modification, are permitted in any medium
without royalty provided the copyright notice and this notice are preserved. This file is offered as-is,
without any warranty.

- 2 -

Table of Contents
1

ZIL Reference Guide 3
Introduction 3
Goal of document 7
Syntax 8
Regarding TRUE and FALSE 8
Regarding ATOMs and other primitive types 9
DECL and ADECL 13
OBLISTs 13
Dynamic and static (lexical) blocking 13
% and %% 14
Segments 15
What is the “new parser”? 15
MDL built-ins and ZIL library (use outside ROUTINE) 15

* (multiply) 16
+ (add) 16
- (subtract) 16
/ (divide) 16
0? 16
1? 16
==? 16
=? 17
ADD-TELL-TOKENS 17
ADD-WORD 17
ADJ-SYNONYM 22
AGAIN 22
ALLTYPES 22
AND 22
AND? 23
ANDB 23
APPLICABLE? 23
APPLY 23
APPLYTYPE 24
ASCII 24
ASK-FOR-PICTURE-FILE? 24
ASSIGNED? 24
ASSOCIATIONS 24
ATOM 25

- 3 -

AVALUE 25
BACK 25
BEGIN-SEGMENT 26
BIND 26
BIT-SYNONYM 27
BLOAT 27
BLOCK 27
BOUND? 28
BUZZ 28
BYTE 28
CHECK-VERSION? 29
CHECKPOINT 29
CHRSET 29
CHTYPE 30
CLOSE 31
COMPILATION-FLAG 31
COMPILATION-FLAG-DEFAULT 31
COMPILATION-FLAG-VALUE 32
COMPILING? 32
COND 33
CONS 33
CONSTANT 33
CRLF 34
DECL-CHECK 34
DECL? 34
DEFAULT-DEFINITION 36
DEFAULTS-DEFINED 37
DEFINE 38
DEFINE-GLOBALS 39
DEFINE-SEGMENT 39
DEFINE20 39
DEFINITIONS 39
DEFMAC 40
DEFSTRUCT 40
DELAY-DEFINITION 44
DIR-SYNONYM 44
DIRECTIONS 44
EMPTY? 44
END-DEFINITIONS 44
END-SEGMENT 44

- 4 -

ENDBLOCK 45
ENDLOAD 45
ENDPACKAGE 45
ENDSECTION 45
ENTRY 45
EQVB 45
ERROR 45
EVAL 46
EVAL-IN-SEGMENT 46
EVALTYPE 46
EXPAND 47
FILE-FLAGS 47
FILE-LENGTH 48
FLOAD 49
FORM 49
FREQUENT-WORDS? 49
FUNCTION 49
FUNNY-GLOBALS? 51
G=? 52
G? 52
GASSIGNED? 52
GBOUND? 52
GC 52
GC-MON 52
GDECL 52
GET-DECL 54
GETB 54
GETPROP 54
GLOBAL 55
GROW 55
GUNASSIGN 56
GVAL 56
IFFLAG 56
ILIST 57
IMAGE 57
INCLUDE 57
INCLUDE-WHEN 57
INDENT-TO 58
INDEX 58
INDICATOR 58

- 5 -

INSERT 59
INSERT-FILE 60
ISTRING 60
ITABLE 61
ITEM 62
IVECTOR 62
L=? 63
L? 63
LANGUAGE 63
LEGAL? 63
LENGTH 64
LENGTH? 64
LINK 64
LIST 65
LONG-WORDS? 65
LOOKUP 66
LPARSE 66
LSH 66
LTABLE 67
LVAL 67
M-HPOS 67
MAKE-GVAL 67
MAPF 67
MAPLEAVE 68
MAPR 69
MAPRET 70
MAPSTOP 70
MAX 70
MEMBER 71
MEMQ 71
MIN 71
MOBLIST 71
MOD 71
MSETG 71
N==? 72
N=? 72
NEVER-ZAP-TO-SOURCE-DIRECTORY? 72
NEW-ADD-WORD 72
NEWTYPE 73
NEXT 73

- 6 -

NOT 73
NTH 73
OBJECT 74
OBLIST? 77
OFFSET 77
OPEN 78
OR 78
OR? 78
ORB 79
ORDER-FLAGS? 79
ORDER-OBJECTS? 79
ORDER-TREE? 80
PACKAGE 80
PARSE 82
PICFILE 83
PLTABLE 83
PNAME 83
PREP-SYNONYM 83
PRIMTYPE 83
PRIN1 83
PRINC 83
PRINT 83
PRINT-MANY 84
PRINTTYPE 84
PROG 85
PROPDEF 86
PTABLE 89
PUT 90
PUT-DECL 90
PUT-PURE-HERE 90
PUTB 90
PUTPROP 90
PUTREST 91
QUIT 91
QUOTE 91
READSTRING 91
REMOVE 92
RENTRY 92
REPEAT 93
REPLACE-DEFINITION 94

- 7 -

REST 94
RETURN 95
ROOM 95
ROOT 98
ROUTINE 98
ROUTINE-FLAGS 99
SET 99
SET-DEFSTRUCT-FILE-DEFAULTS 99
SETG 100
SETG20 100
SORT 100
SPNAME 101
STRING 101
STRUCTURED? 101
SUBSTRUC 101
SUPPRESS-WARNINGS? 102
SYNONYM 102
SYNTAX 102
TABLE 106
TELL-TOKENS 106
TIME 107
TOP 107
TUPLE 107
TYPE 107
TYPE? 107
TYPEPRIM 107
UNASSIGN 107
UNPARSE 108
USE 108
USE-WHEN 108
VALID-TYPE? 108
VALUE 109
VECTOR 109
VERB-SYNONYM 110
VERSION 110
VERSION? 112
VOC 112
WARN-AS-ERROR? 114
XFLOAD 114
XORB 114

- 8 -

ZGET 114
ZIP-OPTIONS 114
ZPACKAGE 115
ZPUT 115
ZREST 115
ZSECTION 116
ZSTART 116
ZSTR-OFF 116
ZSTR-ON 116
ZZPACKAGE 116
ZZSECTION 116

Z-code built-ins (use inside ROUTINE) 116
*, MUL 117
+, ADD 117
-, SUB 117
/, DIV 117
0?, ZERO? 117
1? 117
=?, ==?, EQUAL? 118
AGAIN 118
AND 119
APPLY 120
ASH, ASHIFT 120
ASSIGNED? 122
BACK 122
BAND, ANDB 123
BCOM 123
BIND 123
BOR, ORB 124
BTST 124
BUFOUT 124
CATCH 125
CHECKU 125
CLEAR 125
COLOR 125
COND 126
CRLF 128
CURGET 128
CURSET 128
DCLEAR 129

- 9 -

DEC 129
DIRIN 129
DIROUT 129
DISPLAY 130
DLESS? 131
DO 131
ERASE 135
F? 136
FCLEAR 136
FIRST? 136
FONT 136
FSET 137
FSET? 137
FSTACK 137
G?, GRTR? 137
G=? 137
GET 137
GETB 138
GETP 138
GETPT 138
GVAL 139
HLIGHT 139
IFFLAG 139
IGRTR? 139
IN? 139
INC 140
INPUT 140
INTBL? 140
IRESTORE 141
ISAVE 142
ITABLE 142
L?, LESS? 143
L=? 143
LEX 143
LOC 144
LOWCORE-TABLE 144
LOWCORE 145
LSH, SHIFT 145
LTABLE 146
LVAL 146

- 10 -

MAP-CONTENTS 146
MAP-DIRECTIONS 147
MARGIN 148
MENU 149
MOD 149
MOUSE-INFO 149
MOUSE-LIMIT 150
MOVE 150
N=?, N==? 150
NEXT? 150
NEXTP 150
NOT 151
OR 151
ORIGINAL? 151
PICINF 151
PICSET 152
PLTABLE 152
POP 152
PRINT 152
PRINTB 153
PRINTC 153
PRINTD 153
PRINTF 153
PRINTI 154
PRINTN 154
PRINTR 154
PRINTT 154
PRINTU 155
PROG 155
PTABLE 157
PTSIZE 157
PUSH 157
PUT 158
PUTB 158
PUTP 159
QUIT 159
RANDOM 159
READ 159
REMOVE 161
REPEAT 161

- 11 -

REST 163
RESTART 163
RESTORE 164
RETURN 164
RFALSE 165
RFATAL 165
RSTACK 165
RTRUE 165
SAVE 165
SCREEN 165
SCROLL 166
SET 166
SETG 166
SOUND 166
SPLIT 167
T? 167
TABLE 167
TELL 169
THROW 169
USL 169
VALUE 170
VERIFY 170
VERSION? 170
WINATTR 171
WINGET 171
WINPOS 171
WINPUT 171
WINSIZE 171
XPUSH 171
ZWSTR 171

171
Appendix A: Other Z-machine OP-codes 171
Appendix B – Field-spec for header 173

Ordinary header 173
Extended header 177

177
Appendix C - Reserved constants, globals & locals 177

178
Appendix D - Structure of vocabulary, verbs, syntax, prepositions, actions and preactions tables;
and the new parser 178

- 12 -

Vocabulary table 178
Verbs table 180
Syntax table 180
Actions table 183
Preactions table 183
Prepositions table 183
Parser in Infocom version 6 games, the “new parser” 183

- 13 -

ZIL Reference Guide

 Introduction
Historically Zork (the mainframe version) was developed in MDL at M.I.T. on an PDP-10 ITS.
When Infocom faced the task of moving Zork to 8-bit computers they created a virtual machine that
was able to run a subset of MDL (just enough to get a stripped down version of Zork to run: the
game we now call Zork I). This virtual machine is now often called a "Z-Machine", and exists in
many versions on many platforms.

The Z-machine runs this subset of commands and reads the game data from a formatted
data-structure suited for Interactive Fiction.

Infocom’s development environment was always MDL on PDP-10. In this environment they had
access to MDL and a library of FUNCTIONS designed to help build the data-structure. In the
environment there was also ZILCH that compiled the code to a format that the Z-machine could
understand.

This means that everything that is inside a ROUTINE is code that compiles to instructions that the
Z-machine understands and everything that is outside the ROUTINE is MDL that is used to build
the data-structure. There are two classes of commands. And some instructions to ZILCH, the
compiler

The full developing environment for Infocom doesn't exist today, although parts exist in a PDP-10
ITS emulation project. As of today there is a MDL interpreter and some code of ZILCH, but
primarily the MDL compiler is still missing. Efforts are underway to piece together the PDP-10 ITS
environment from old tapes and eventually it may succeed.

Luckily there is now another way to write and compile ZIL: the compiler known as ZILF.

The ZILF environment contains a subset of MDL and the Infocom library of FUNCTIONS (to build
the data-structure and ROUTINES). ZILF also can compile all this to a format that then can run in a
Z-machine.

This document is divided in basically two parts.

The first part is the things that only work outside a ROUTINE. These commands are processed
during compilation to build the data-structure. Here you need to pay attention to order and declare
things before they are used.

The second part is things that only work inside a ROUTINE. These commands are processed by the
Z-machine during runtime.

Sources:

Learning ZIL, Steve E. Meretzky

ZIL Course, Marc S. Blank

ZILF source code, Tara McGrew

 Goal of document
[This is NOT a manual on how to write games. The goal is to list all instructions and syntaxes with
short examples to use when reading game code. It should also list syntax and behaviour that is
specific for ZILF.]

- 14 -

 Syntax
Typename Size Min-Max Examples

FIX 32-bit signed integer -2147483648 to
2147483648

616
747
#2 10110111

CHARACTER 8-bit 0 to 255 !\A

BYTE 8-bit 0 to 255 65

FALSE <>

<CHTYPE value type>
<GVAL value>
<LIST values ...)
<LVAL value>
<VECTOR values ...>
<QUOTE value>

#type value
,value
(values ...)
.value
[values ...]
'value

Regarding TRUE and FALSE
True and false are handled differently depending on if you are "outside" or "inside" routines.

Outside routines FALSE is its own TYPE which evaluates to an empty list <>.

Inside routines the value 0 is considered FALSE, all other values are considered TRUE.

Example:

<=? <> 0> --> FALSE "outside", but TRUE "inside"

Regarding ATOMs and other primitive types
ZILF recognizes the following primitive types: ATOM, FIX, LIST, STRING, TABLE and VECTOR.
Everything that ZILF encounters when it reads the code falls into one of these types (or derived
types of these primitive ones).

FIX 32-bit signed integer. Any number is a
FIX. CHARACTER and BYTE are
examples of TYPEs whose PRIMTYPE
is FIX.

616
747
#2 10110111
!\A

LIST Linked list (forward looking).A LIST
is enclosed by parentheses. FORM,
FUNCTION and MACRO are examples
of TYPEs whose PRIMTYPE is LIST.

(1 2 3)
<+ 1 2>
<>
#FUNCTION <() <+ 1 2>>

STRING A continuous byte array containing "Hello, world!"

- 15 -

characters. A STRING is enclosed by
double-quotes.

TABLE A continuous byte or word array. This
TYPE is specific for ZIL and is a
simplified VECTOR without any TYPE
information about the individual
elements. A TABLE is zero-based and
element at index 0 can be specified to
contain the length of the TABLE.

#TABLE [5 6 7]
<TABLE (BYTE) 5 6 7>
<TABLE (BYTE LENGTH) 5 6 7>

VECTOR A continuous array of elements. A
VECTOR is enclosed by square
brackets. Each element holds
information about its TYPE. MDL has a
UVECTOR TYPE that contains uniform
elements (same TYPE) but ZILF
handles these as VECTORs.

[1 !\A "Hello" (1 2 3)]
![1 2 3 4 5!]

Everything that does not have one of the above as its PRIMTYPE is an ATOM. One can think of an
ATOM as a variable that can hold one of the other TYPEs. Every ATOM can have a global value and
a local value. Every ATOM also has a PNAME (“print name”) that ZILF uses when it needs to print
the name of the ATOM.

Examples:

;"Assign the global ATOM BAR the FIX 123"
<SETG BAR 123>

;"Assign the local ATOM BAR the VECTOR [1 2 3]"
<SET BAR [1 2 3]>

;"Assign the global ATOM BARBAR the global value of ATOM BAR"
<SETG BARBAR <GVAL BAR>>
,BARBAR --> 123

;"Assign the local ATOM FOOBAR the ATOM BAR"
<SET FOOBAR BAR>
.FOOBAR --> BAR
<LVAL <LVAL FOOBAR>> --> [1 2 3]
,.FOOBAR --> 123

;"Assign the global ATOM FUNC a FUNCTION"
<DEFINE FUNC () <+ 1 2>>

;"Assign the global ATOM BAZ a FORM"
<SETG BAZ '<+ 1 2>>
,BAZ --> <+ 1 2>
<EVAL ,BAZ> --> 3

- 16 -

DECL and ADECL

OBLISTs
OBLIST (“object list”) is basically a LIST of ATOMs. ZILF initially has two predefined
OBLISTs, INITIAL and ROOT. INITIAL is empty but every ATOM your program creates will be
stored here. ROOT contains the ATOMs for all built-in FUNCTIONs. MOBLIST can be used to create
new OBLISTs.

If there is ambiguity about which ATOM to use it is possible to specify which OBLISTs ATOM to
use with trailers, !-. The syntax for this is

atom!-oblist

Example:

<SETG FOO 123> ;"Create FOO!-INITIAL and assign it a GVAL"
<SETG FOO!-NOBL 456> ;"Create FOO!-NOBL and assign it a GVAL"
,FOO!-INITIAL --> 123
,FOO!-NOBL --> 456
<MOBLIST NOBL> --> #OBLIST (("FOO" FOO!-NOBL))

ZILF has a LVAL, OBLIST, that is a LIST of OBLISTs. Initially this LIST contains INITIAL
and ROOT. When ZILF resolves which ATOM to use it searches through these LISTs, starting with
<1 .OBLIST>. It is because of this you normally don’t need to specify !-INITIAL. <GVAL
FOO> in the above example will first look for, and find, the ATOM in the OBLIST INITIAL.

OBLISTs are not only used to identify ATOMs. The MDL version of Zork, for example, uses
OBLISTs to handle the vocabulary.

For more on OBLISTs, see ATOM, INSERT, LOOKUP, MOBLIST, OBLIST?, REMOVE, ROOT and
The MDL Programming Language, chapter 15.

Dynamic and static (lexical) blocking
To prevent collisions between ATOMs identifiers there are two types of blocking used in ZILF.

The first type is dynamic blocking and is achieved by pushing and pulling LVALs from the stack.
This assures that every ATOM can have a global value, GVAL, and a local value LVAL. that is unique
for every program block that is defined by, for example, a FUNCTION, BIND, PROG or REPEAT.

Sometimes this is not enough and there is another type of blocking, static or lexical blocking, to
assure that there is no collision between identifiers of ATOMs, for example when library programs
are shared among many different peoples.

By using BLOCK and ENDBLOCK a program block can have another LIST of OBLISTs where it
looks up the ATOMs.

See BLOCK for example of this.

For more on lexical blocking, see The MDL Programming Language, chapter 15.

% and %%
When ZILF interprets MDL, either during compilation or when using ZILF in interpreter mode, it
goes through three stages repeatedly, READ, EVAL and PRINT.

- 17 -

READ reads ASCII-text and when it has something enclosed in matching brackets the result is
passed to EVAL for evaluation that in its turn passes the result of the evaluation to PRINT that
prints the evaluated result. The flow is like below:

printable text → READ → [MDL objects] → EVAL → [MDL objects] → PRINT → printable text

Consider a simple statement like: <+ 1 2>

READ reads from left to right and when it encounters the closing bracket the MDL object <+ 1
2>, a FORM, is passed to EVAL. EVAL evaluates this MDL object and the resulting MDL object, 3,
is passed to PRINT for printing.

% and %% are “READ macros” that are used to modify this process. Whenever READ encounters % or
%% it immediately passes the MDL object that follows the %, or %%, to EVAL before it continues the
READ.

In case of % the result of the EVAL is inserted in place of the MDL object that follows the % and is
used by the following READ.

In case of %% the result of the EVAL is ignored and nothing is inserted in place of the MDL object
that follows the %% (eventual side effects of the EVAL remains, of course).

Example:

<DEFINE INIT-A () <SETG A 0>>
<DEFINE INC-A () <SETG A <+ ,A 1>>>

;"1st INIT-A, 1st INC-A, 2nd INC-A, 2nd INIT-A, 3rd INC-A"
[<INIT-A> <INC-A> <INC-A> (<INIT-A>) <INC-A>]

--> [0 1 2 (0) 1]

;"1st INIT-A, 3rd INC-A, 1st INC-A, 2nd INC-A, 2nd INIT-A"
[%<INIT-A> <INC-A> <INC-A> (<INIT-A>) %<INC-A>]

--> [0 2 3 (0) 1]

;"2nd INIT-A, 3rd INC-A, 1st INIT-A, 2nd INC-A, 3rd INC-A"
[<INIT-A> <INC-A> <INC-A> (%<INIT-A>) %<INC-A>]

--> [0 1 2 (0) 1]

;"1st INIT-A, 1st INC-A, 2nd INC-A, 2nd INIT-A, 3rd INC-A"
[%%<INIT-A> %<INC-A> %<INC-A> (%%<INIT-A>) %<INC-A>]

--> [1 2 () 1]

Segments
Segments are used to copy elements from one structure TYPE to another structure TYPE. Segments
take the form !<function args …!> where the second exclamation point is optional. The
implicit form of LVAL and GVAL is legal. The segment is EVALuated and must be EVALuated
inside another structure and the result of the EVAL must be a structure, otherwise an error is raised.

Examples:

<SET L0 [4 5]>
<SET L1 (1 2 3 .L0)> --> (1 2 3 [4 5])
<SET L2 [!<LVAL L1!>]> --> [1 2 3 [4 5]]
<1 .L0 6>
.L1 --> (1 2 3 [6 5])

- 18 -

.L2 --> [1 2 3 [6 5]]
[!<SUBSTRUC .L1 0 3> (!.L0)] --> [1 2 3 (6 5)]

MDL built-ins and ZIL library (use outside ROUTINE)
The syntax for most of these commands are much like the syntax in MDL.

All these commands are possible to run, test and debug during the interactive mode of ZILF (start
ZILF without any options).

Sources:

MDL built-in MDL built-in function. Part of MUDDLE.56 on ITS.
The MDL Programming Language,

S. W. Galley and Greg Pfister
MUDDLE F/SUBRS (MUDMAN for MUDDLE 55),

P. David Lebling and S. W. Galley

MDL package system Support for lexical blocking.
The MDL Programming Environment, P. David Lebling

ZIL library Functions added through ZIL/ZILCH at Infocom to support
building of interactive fiction.
ZIL Language Guide, Tara McGrew
ZILF source code and test cases, Tara McGrew
Learning ZIL, Steven E. Meretzky
ZIL, Marc S. Blank

ZILF compiler ZILF source code and test cases, Tara McGrew
directive

 * (multiply)
<* numbers ...>

MDL built-in

Multiply numbers.

Example:

<* 2 3 4> --> 24

 + (add)
<+ numbers ...>

MDL built-in

Add numbers.

Example:

<+ 2 3 4> --> 7

- 19 -

 - (subtract)
<- numbers ...>

MDL built-in

Subtract first number by subsequent numbers

If only one number is provided, it's subtracted from zero (i.e. negated).

Examples:

<- 8 3 4> --> 1
<- 5> --> -5

 / (divide)
</ numbers ...>

MDL built-in

Divide first number by subsequent numbers.

Example:

</ 20 5 2> --> 2

 0?
<0? value>

MDL built-in

Predicate. True if value is 0 otherwise false.

 1?
<1? value>

MDL built-in

Predicate. True if value is 1 otherwise false.

 ==?
<==? value1 value2>

MDL built-in

This is a predicate that returns TRUE if value1 and value2 is the same object, otherwise it
returns FALSE.

For ATOMs whose TYPE are structured (for example LISTs and VECTORs) the ATOMs must refer
(point) to the same structure to be considered ==. These ATOMs are actually pointers that point to an

- 20 -

memory address and the two ATOMs must point to the same address to be ==.

For ATOMs whose TYPE is not structured the ATOMs are considered == if they are of the same
TYPE and contain the same value.

ZILF defines "the same object" more loosely than MDL do:

● STRINGs are considered ==? if they contain the same text.
● LVALs and GVALs are considered ==? if they refer to the same ATOMs.

Examples:

<SET X 1>
<==? .X 1> --> True

<SET X (1 2 3)>
<==? .X (1 2 3)> --> False

<==? "Hello" "Hello"> --> True (in ZILF, but not in MDL)

 =?
<=? value1 value2>

MDL built-in

This is a predicate that returns TRUE if value1 and value2 is of the same TYPE and structurally
equal, otherwise it returns FALSE.

Examples:

<SET X 1>
<=? .X 1> --> True

<SET X (1 2 3)>
<=? .X (1 2 3)> --> True

 ADD-TELL-TOKENS
<ADD-TELL-TOKENS {pattern form} ...>

ZIL library

Add a new pattern and form to the current TELL-TOKENS. These can then be used in TELL.

Each pattern starts with either:

● Any single ATOM except * (asterisk)
● A LIST of ATOMs, which will define them as synonyms

A simple pattern, like CR, consists of a name and nothing else. More often, patterns also define
placeholders to match -- and optionally capture -- parameter values when the token is used inside a
TELL. The rest of the pattern consists of any number of:

● An asterisk (*), to match and capture any value.
● An ADECL whose left side is an asterisk (like *:FIX), to match and capture any value that

matches the DECL pattern on the right side.

- 21 -

● A GVAL (like ,PRSO or equivalently <GVAL PRSO>), to match that exact GVAL without
capturing it.

Each pattern is followed by a form that will be copied and inserted in place of the TELL when the
pattern is matched. Each element of the form must be either:

● An ATOM, FIX, STRING, or FALSE.
● An LVAL or GVAL
● An empty FORM

The form must contain exactly one LVAL for each element of the pattern that captures a value.
These LVALs are positional placeholders that will be replaced by the captured values, in order. The
specific ATOM referenced by each LVAL is ignored.

Example (zillib 0.9 adds these tokens):

<ADD-TELL-TOKENS
T * <PRINT-DEF .X>
A * <PRINT-INDEF .X>
CT * <PRINT-CDEF .X>
CA * <PRINT-CINDEF .X>
NOUN-PHRASE * <PRINT-NOUN-PHRASE .X>
OBJSPEC * <PRINT-OBJSPEC .X>
SYNTAX-LINE * <PRINT-SYNTAX-LINE .X>
WORD * <PRINT-WORD .X>
MATCHING-WORD * * * <PRINT-MATCHING-WORD .X .Y .Z>>

 ADD-WORD
<ADD-WORD atom-or-string [part-of-speech] [value] [flags]>

ZIL parser library

ADD-WORD requires the new parser (<SETG NEW-PARSER? T>). Note that the standard library
that's included with ZILF, zillib, doesn't support the new parser.

The new parser needs a couple of boot-strap FUNCTIONs, GVALs and DEFSTRUCTs to work.

CLASSIFIED A global LIST that defines the part-of-speech
and its value.

GET-CLASSIFICATION A FUNCTION that can return the part-of-speech from
CLASSIFIED.

VERB-DATA A DEFSTRUCT.
VWORD A DEFSTRUCT.

There also needs to be a call to SET-DEFSTRUCT-FILE-DEFAULTS to set up the
DEFSTRUCTs.

There’s also two COMPILATION-FLAGs that control how the vocabulary is set up.

WORD-FLAGS-IN-TABLE Creates the GVAL WORD-FLAG-TABLE.
ONE-BYTE-PARTS-OF-SPEECH Control if the part-of-speech value should

occupy a byte or a word (If the size of each entry in the

- 22 -

vocabulary is 9 or 10 bytes)

INFOCOM only used the new parser in three published games (Arthur, Shogun and Zork Zero) and
two unpublished projects (Abyss and Restaurant). ADD-WORD and NEW-ADD-WORD is in these
games called with these values

part-of-speech value flags flag-value
ADJ <> FIRST-PERSON 8
ADV <VOC string> PLURAL-FLAG 16
APOSTR SECOND-PERSON 32
ARTICLE THIRD-PERSON 64
ASKWORD PRESENT-TENSE 256
CANDO PAST-TENSE 512
COMMA FUTURE-TENSE 1024
END-OF-INPUT POSSESSIVE 16384
MISCWORD
NOUN
OFWORD
PARTICLE
PREP
QUANT
QUOTE
QWORD
TOBE
VERB

Examples:

<VERSION 5>

<COMPILATION-FLAG WORD-FLAGS-IN-TABLE T>
<COMPILATION-FLAG ONE-BYTE-PARTS-OF-SPEECH <>>

<SETG NEW-PARSER? T>

<SETG CLASSIFICATIONS '(ADJ 1 BUZZ 2 DIR 4 NOUN 8 PREP 16
VERB 32 PARTICLE 64 ARTICLE 128
ASKWORD 256 QUOTE 512)>

<DEFINE GET-CLASSIFICATION (TYPE "AUX" P)
<COND (<SET P <MEMQ .TYPE ,CLASSIFICATIONS>> <2 .P>)

(T <ERROR NO-SUCH-WORD-TYPE!-ERRORS>)>>

<SET-DEFSTRUCT-FILE-DEFAULTS ('START-OFFSET 0)
('PUT ZPUT)
('NTH ZGET)>

<DEFSTRUCT VERB-DATA (TABLE ('INIT-ARGS (TEMP-TABLE)))
(VERB-ZERO ANY -1)
(VERB-RESERVED FALSE)
(VERB-ONE <OR FALSE TABLE>)
(VERB-TWO <OR FALSE TABLE>)>

<DEFSTRUCT VWORD (TABLE ('INIT-ARGS (TEMP-TABLE)))

- 23 -

(WORD-LEXICAL-WORD ANY)
(WORD-CLASSIFICATION-NUMBER FIX)
(WORD-FLAGS FIX)
(WORD-SEMANTIC-STUFF ANY)
(WORD-VERB-STUFF ANY)
(WORD-ADJ-ID ANY)
(WORD-DIR-ID ANY)>

<SYNTAX SING = V-SING>
<ROUTINE V-SING () <>>

<SYNTAX ATTACK OBJECT WITH OBJECT = V-ATTACK>
<ROUTINE V-ATTACK () <>>

<ADD-WORD FOO NOUN <> 12345>
<ADD-WORD BAR PREP>
<SYNONYM BAR BAZ>

<ROUTINE GO () <TEST-NEW-PARSER>>

<ROUTINE TEST-NEW-PARSER ("AUX" S)
;"Should affect VOCAB word size"
<SET S <GETB ,VOCAB <+ 1 <GETB ,VOCAB 0>>>>
<TELL "VOCAB word-size = " N .S CR>

;"Verbs should have verb data"
<TELL "Verb data = " N <GET ,W?SING 3> CR>

;"Should affect syntax format"
<TELL "Verb WORD 3 (Byte 6-7) in VOCAB is pointer:" CR>
<TELL " WORD 0 = " N <GET <GET ,W?ATTACK 3> 0> CR>
<TELL " WORD 1 = " N <GET <GET ,W?ATTACK 3> 1> CR>
<TELL " WORD 2 = " N <GET <GET ,W?ATTACK 3> 2> CR>
<TELL " WORD 3 = " N <GET <GET ,W?ATTACK 3> 3> CR>

;"WORD-FLAG-TABLE should list words and flags"
<TELL "WORD-FLAG-TABLE contain words and flags" CR>
<TELL " Entry size = " N <GET ,WORD-FLAG-TABLE 0> CR>
<TELL " W?FOO = " N ,W?FOO CR>
<TELL " Word = " N <GET ,WORD-FLAG-TABLE 1> CR>
<TELL " Flag = " N <GET ,WORD-FLAG-TABLE 2> CR>

;"Synonyms should use pointers, part-of-speech = 0"
<TELL "SYNONYM points to parent" CR>
<TELL " W?BAR = " N ,W?BAR CR>
<TELL " W?BAZ = " N ,W?BAR CR>
<TELL " WORD 3 in W?BAR = " N <GET ,W?BAR 3> CR>
<TELL " WORD 3 in W?BAZ = " N <GET ,W?BAZ 3> CR>
<TELL " WORD 4 (PoS) in W?BAR = " N <GET ,W?BAR 4> CR>
<TELL " WORD 4 (PoS) in W?BAZ = " N <GET ,W?BAZ 4> CR>

>

- 24 -

 ADJ-SYNONYM
<ADJ-SYNONYM original synonyms ...>

ZIL parser library

ADJ-SYNONYM creates one or more synonyms to the original adjective.

ZILF treats ADJ-SYNONYM as an alias to SYNONYM.

Note that due to the way words, especially adjectives and nouns, are stored in the vocabulary
synonyms for adjectives only work in version 3 (ZIP) games.

 AGAIN
<AGAIN [activation]>

MDL built-in

AGAIN means “start doing this again”, where “this” is specified by the activation. If no
activation is supplied AGAIN starts evaluating from the last automatically created
activation (PROG and REPEAT automatically creates an activation). The evaluation is not
redone completely: in particular, no re-binding (of arguments, "AUX" variables, etc.) is done.

Examples:

<DEFINE TEST-AUTO-ACT ()
<PROG ((X 0))

<SET X <+ .X 1>>
<PRIN1 .X>
<COND (<=? .X 5> <RETURN T>)>
<AGAIN>

>
>

<DEFINE TEST-NAMED-ACT-1 ACT ("AUX" (X 0))
<SET X <+ .X 1>>
<PRIN1 .X>
<COND (<=? .X 5> <RETURN T .ACT>)>
<AGAIN .ACT>

>

<DEFINE TEST-NAMED-ACT-2 ("NAME" ACT "AUX" (X 0))
<SET X <+ .X 1>>
<PRIN1 .X>
<COND (<=? .X 5> <RETURN T .ACT>)>
<AGAIN .ACT>

>

 ALLTYPES
<ALLTYPES>

- 25 -

MDL built-in

returns a VECTOR containing the ATOMs which can currently be returned by TYPE or PRIMTYPE.

 AND
<AND expressions...>

MDL built-in

Boolean AND. Requires that all expressions evaluate to true to return true. Exits on the first
expression that evaluates to false (rest of expressions are not evaluated).

Because 0 is considered false and all other values are considered true inside a routine AND returns 0
if one expression is false or the value of the last expression if all expressions are true.

Because false is its own TYPE outside a routine AND returns #FALSE if one of the expressions
is false or the value of the last expression if all expressions are true.

Example:

<AND <=? 1 1> <N=? 1 2>> --> True
<AND <=? 1 2> <SET X 2>> --> X never set to 2 because

first predicate evaluates
to false

<SET X <AND 1 2 3 0 4>> --> X is set to 4
<SET X <AND 1 2 3 <> 4>> --> X is set to #FALSE
<SET X <AND 1 4 3 2>> --> X is set to 2

 AND?
<AND? expressions ...>

MDL built-in

Returns the same result as AND with the difference that all expressions are evaluated.

Examples:

<AND? <=? 1 1> <N=? 1 2>>--> True
<AND? <=? 1 2> <SET X 2>>--> X is set to 2 because

all expressions are
evaluated

 ANDB
<ANDB numbers ...>

MDL built-in

Bitwise AND.

Examples:

- 26 -

<ANDB 33 96> --> 32
<ANDB 33 96 64> --> 0

 APPLICABLE?
<APPLICABLE? value>

MDL built-in

Predicate. Returns true if TYPE of value is of an applicable TYPE.

Applicable TYPEs:
FIX
FSUBR
FUNCTION
MACRO
OFFSET
SUBR

Example:

<DEFINE SQR (X) <* .X .X>>

<APPLICABLE? ,SQR> --> True

 APPLY
<APPLY applicable args ...>

MDL built-in

Call the applicable with args. <APPLY applicable args ...> is equivalent to
<applicable args ...>. applicable must be an atom that APPLICABLE? evaluates
to true (usually FUNCTION, SUBR, FSUBR & MACRO). APPLY is often used when the
applicable to be called is resolved during run-time (dispatch-table).

Examples:

<CONSTANT DISPATCH-TBL <VECTOR FUNC1 FUNC2>>
<DEFINE FUNC1 (X) <* .X .X>>
<DEFINE FUNC2 (X) <* .X .X .X>>
<APPLY ,<NTH ,DISPATCH-TBL 1> 2> --> 4
<APPLY ,<NTH ,DISPATCH-TBL 2> 2> --> 8

 APPLYTYPE
<APPLYTYPE atom [handler]>

MDL built-in

APPLYTYPE tells the TYPE atom how it should be applied in a FORM. If APPLYTYPE is called
without a handler then the currently active handler is returned. If there is no active handler,
FALSE is returned.

- 27 -

Note that it is possible to replace the handler with a new handler, even on the predefined
TYPEs (see EVALTYPE for example on this).

See EVALTYPE, NEWTYPE and PRINTTYPE.

Example:

<NEWTYPE WINNER LIST>
<APPLYTYPE WINNER> --> #FALSE
<APPLYTYPE WINNER <FUNCTION (W "TUPLE" T) (!.W !.T)>>
<#WINNER (A B C) <+ 1 2> q> --> (A B C 3 q)

 ASCII
<ASCII {number | character}>

MDL built-in

Converts number to character or character to number.

Examples:

<ASCII !\A> --> 65
<ASCII 65> --> !\A

ASK-FOR-PICTURE-FILE?
 <ASK-FOR-PICTURE-FILE?>

 ZIL library

ZILF ignores this and always returns FALSE.

 ASSIGNED?
<ASSIGNED? atom [environment]>

MDL built-in

Predicate. Returns true if the atom has an LVAL (local value).

It is possible to supply an environment for ASSIGNED?. See EVAL for more about the
environment.

Example:

<ASSIGNED? X> --> False
<SET X 1>
<ASSIGNED? X> --> True

 ASSOCIATIONS
<ASSOCIATIONS>

MDL built-in

- 28 -

ASSOCIATIONS gives access to the association chain. ASSOCIATIONS returns the first entry in
the chain or FALSE if the chain is empty. Each entry is of the TYPE ASOC. An ASOC contains three
elements: ITEM, INDICATOR and VALUE. An ASOC looks like a LIST but behaves differently.

Note that ZILF adds new ASSOCIATIONS last in the chain instead of at the top that’s usually done
in MDL.

See AVALUE, GETPROP, INDICATOR, ITEM, NEXT and PUTPROP on how to extract, create and
traverse the chain.

Example:

;"Put all ASOCs in a LIST"
<PROG ((A <ASSOCIATIONS>))

<COND (<NOT .A> '())
(T (.A !<MAPF ,LIST

<FUNCTION () <COND (<SET A <NEXT .A>> .A)
(T <MAPSTOP>)>>>))>>

 ATOM
<ATOM pname>

MDL built-in

ATOM returns a newly created ATOM with pname (string). The ATOM is not on any OBLIST and
therefore has the trailer !-#FALSE () attached to it.

Examples:

<ATOM "FOO"> --> FOO!-#FALSE ()

<==? <ATOM "FOO"> <ATOM "FOO">> --> #FALSE

 AVALUE
<AVALUE asoc>

MDL built-in

AVALUE returns the value part from an asoc entry, of TYPE ASOC, in the ASSOCIATION chain.

See ASSOCIATIONS, GETPROP, INDICATOR, ITEM, NEXT and PUTPROP.

Example:

<DEFINE LAST-ASOC ()
<REPEAT ((A <ASSOCIATIONS>))

<COND (<=? .A <>> <RETURN <>>)
(<=? <NEXT .A> <>> <RETURN .A>)>

<SET A <NEXT .A>>>>

<PUTPROP NEW-ASOC TEXT "Hello, world!">
<SET A <LAST-ASOC>>
<AVALUE .A> --> "Hello, world!"

- 29 -

 BACK
<BACK array [count]>

MDL built-in

Moves count elements back in array. If count moves past the start of the array an error is
raised. Default value for count is 1.

BACK only works on the structures VECTOR or STRING (arrays) and not on a LIST (a LIST is
only pointing forward).

Note that the returned array is not a copy but pointing to the same array with another starting
element.

Also see LENGTH, NTH, PUT, REST, SUBSTRUC and TOP.

Example:

<SETG STRUCT1 [1 2 3 4 5]> --> STRUCT1 = [1 2 3 4 5]
<SETG STRUCT2 <REST ,STRUCT1 2>> --> STRUCT2 = [3 4 5]
<BACK ,STRUCT2 1> --> STRUCT2 = [2 3 4 5]

BEGIN-SEGMENT
 <BEGIN-SEGMENT>

 ZIL library

ZILF ignores this and always returns FALSE.

 BIND
<BIND [activation] (bindings ...) [decl] expressions ...>

MDL built-in

BIND defines a program block with its own set of bindings. BIND is similar to PROG and
REPEAT but BIND doesn't create a default activation (like PROG and REPEAT) at the start of
the block and doesn't have an automatic AGAIN at the end of the block (like REPEAT). If an
activation is needed it must be specified. AGAIN and RETURN without specified
activation inside a BIND-block will start over or return from the closest surrounding
activation within the current function.

The decl is used to specify the valid TYPE of the variables. In its simplest form decl is
formatted like: #DECL ((X) FIX), meaning that X must be of the TYPE FIX. For more
information on how to format the decl see GDECL.

Also see AGAIN, PROG, REPEAT and RETURN for more details how to control program flow.

Example:

<BIND ((X 1)) #DECL ((X) FIX)
<BIND ((X 2)) <PRIN1 .X>> <PRIN1 .X>>

--> "21"

- 30 -

<DEFINE TEST-BIND-AS-REPEAT ()
<PRINC "START ">
<BIND ACT ((X 0))

<SET X <+ .X 1>>
<PRIN1 .X>
<COND (<=? .X 3> <RETURN T .ACT>)> ;"--> exit

block"
<AGAIN .ACT> ;"--> repeat"

>
<PRINC " END">

>
<TEST-BIND-AS-REPEAT> --> "START 123 END"

 BIT-SYNONYM
<BIT-SYNONYM first synonyms ...>

ZIL parser library

BIT-SYNONYM creates synonyms to flag-bits.

Example:

<BIT-SYNONYM TAKEBIT GETBIT PICKBIT>
<BIT-SYNONYM LIGHTBIT DAYBIT>

BLOAT
<BLOAT>

MDL built-in

 ZILF ignores this and always returns FALSE.

 BLOAT is used in MDL to temporarily expand available storage space to avoid unnecessary garbage
collection when loading large files.

 BLOCK
<BLOCK (oblist ...)>

MDL built-in

BLOCK pushes current binding of the local ATOM OBLIST and rebinds it with the LIST of
oblist supplied as argument and returns the new <LVAL OBLIST>.. Usually you want
<ROOT> as the last oblist in LIST. <ENDBLOCK> then restores the local ATOM OBLIST to its
previous value.

Example:

<SETG FOO 111>
<SET BAR 222>
<DEFINE TEST-BLOCK () <PRINT "OUTSIDE BLOCK">>

- 31 -

<BLOCK (<MOBLIST NEW-OBLIST> <ROOT>)>
<SETG FOO 333>
<SET BAR 444>
<DEFINE TEST-BLOCK () <PRINT "INSIDE BLOCK">>
<GVAL FOO> --> 333
<LVAL BAR> --> 444
<TEST-BLOCK> --> "INSIDE BLOCK"
<ENDBLOCK>
<GVAL FOO> --> 111
<LVAL BAR> --> 222
<TEST-BLOCK> --> "OUTSIDE BLOCK"

 BOUND?
<BOUND? atom [environment]>

MDL built-in

BOUND? is a predicate that returns true if the atom ever had a local value in the environment.

If no environment is supplied, the environment defaults to current scope. See EVAL for
more about the environment.

Examples:

<SET X 42>
<ASSIGNED? X> --> True
<GBOUND? X> --> True
<GUNASSIGN X>
<GASSIGNED? X> --> False
<GBOUND? X> --> True

 BUZZ
<BUZZ atoms ...>

ZIL parser library

BUZZ creates words in the vocabulary with the part-of-speech BUZZ. These are words that
can be ignored by the parser or have special handling in the parser.

Example:

<BUZZ A AN AND ANY ALL EVERY EVERYTHING BUT EXCEPT OF ONE
THE THEN UNDO OOPS \. \, \">

 BYTE
<BYTE number>
#BYTE number ;"Alternative syntax (MDL built-in)"
<CHTYPE number BYTE> ;"Alternative syntax (MDL built-in)"

ZIL library

- 32 -

BYTE changes number of TYPE to #BYTE.

Examples:

<BYTE 42> --> #BYTE 42
#BYTE 42 --> #BYTE 42
<CHTYPE 42 BYTE> --> #BYTE 42

 CHECK-VERSION?
<CHECK-VERSION? version-spec>

ZIL library

CHECK-VERSION? is a predicate that returns TRUE if current setting of VERSION is
version-spec. Valid values for version-spec are ZIP, EZIP, XZIP, YZIP and the values
3-8.

Examples:
<VERSION XZIP>
<CHECK-VERSION? ZIP> --> #FALSE
<CHECK-VERSION? 5> --> T

CHECKPOINT
<CHECKPOINT>

ZIL library

ZILF ignores this and always returns FALSE.

 CHRSET
<CHRSET alphabet-number {string | character |

number | byte} ...>

ZIL library

CHRSET can be used in version 5+ to replace one or more of the standard character alphabets.

The ZSCII alphabet table is divided up in three blocks of 26 characters each, totaling 78 characters.
The default layout is:

Z-char 6789abcdef0123456789abcdef
current --------------------------

A0 abcdefghijklmnopqrstuvwxyz
A1 ABCDEFGHIJKLMNOPQRSTUVWXYZ
A2 ^0123456789.,!?_#'"/\-:()

Text is then encoded into 2-byte words with 5-bits per character. The left-over bit is always 0 except
on the last word where it is 1 to indicate that tis is the last 2-byte word in the text.

- 33 -

--first byte------- --second byte---
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
bit --first-- --second--- --third--

Initially the A0 is the current alphabet. The characters 2, 3, 4 and 5 change alphabet according to
this table:

from A0 from A1 from A2
Z-char 2 A1 A2 A0
Z-char 3 A2 A0 A1
Z-char 4 A1 A2 A0
Z-char 5 A2 A0 A1

Character 2 and 3 change the alphabet for the next character (“shift”) and character 4 and 5 change
the alphabet permanent (“shift lock”).

CHARSET change one character in one alphabet or change an alphabet altogether.

Example:

;" 1 2 3
67890123456789012345678901
zyxwvutsrqponmlkjihgfedcba

z=6 i=23 l=20
1 00110 10111 10100"

<VERSION 5>

<CHRSET 0 "zyxwvutsrqponmlkjihgfedcba">
<CONSTANT ENCODED-TEXT <TABLE #2 1001101011110100>>
<CONSTANT MYTEXT "zil">

<ROUTINE GO () <TEST-CHRSET>>

<ROUTINE TEST-CHRSET ()
<PRINTB ,ENCODED-TEXT> <CRLF>
<PRINT ,MYTEXT> <CRLF>
<PRINTN <GET ,ENCODED-TEXT 0>> <CRLF>
<PRINTN <GET <* 4 ,MYTEXT> 0>> <CRLF> ;"Multiply by 4 to

get packed
address in v 5."

<PRINTN <- <GET <* 4 ,MYTEXT> 0> <GET ,ENCODED-TEXT 0>>>
<CRLF>>

-->
zil
zil
-25868
-25868
0

 CHTYPE
<CHTYPE value type>
#type value ;"Alternative syntax"

- 34 -

MDL built-in

CHTYPE returns a new object that has TYPE type and the same “data part” as value. The
PRIMTYPE of value must be the same as the TYPEPRIM of type otherwise an error will be
generated.

There is a abbreviated form to change type by typing #type value instead.

Examples:

<CHTYPE !\A FIX> --> 65
#FIX !\A --> 65
#LIST [1 2 3] --> ERROR

 CLOSE
<CLOSE channel>

MDL built-in

CLOSE the channel opened by OPEN and returns the channel.

See READSTRING for example.

 COMPILATION-FLAG
<COMPILATION-FLAG atom-or-string [value]>

ZIL library

This defines a COMPILATION-FLAG named atom-or-string with initialized to value. If no
value is supplied it defaults to TRUE. The name of the flag can either be an ATOM or a STRING
whose text becomes the ATOM.

The flag can then be read by COMPILATION-FLAG-VALUE or used as a condition in
IFFLAG.

A call to COMPILATION-FLAG with an already defined ATOM changes the value of the ATOM.

Examples:

<COMPILATION-FLAG MYFLAG>
<COMPILATION-FLAG-VALUE MYFLAG> --> T
<COMPILATION-FLAG “MYFLAG” 123>
<COMPILATION-FLAG-VALUE MYFLAG> --> 123

 COMPILATION-FLAG-DEFAULT
<COMPILATION-FLAG-DEFAULT atom-or-string value>

ZIL library

This defines a COMPILATION-FLAG named atom-or-string with initialized to value. If no
value is supplied it defaults to TRUE. The name of the flag can either be an ATOM or a STRING

- 35 -

whose text becomes the ATOM.

The flag can then be read by COMPILATION-FLAG-VALUE or used as a condition in
IFFLAG.

A call to COMPILATION-FLAG-DEFAULT with an already defined ATOM doesn't change the
value of the ATOM.

Examples:

<COMPILATION-FLAG-DEFAULT MYFLAG T>
<COMPILATION-FLAG-VALUE MYFLAG> --> T
<COMPILATION-FLAG “MYFLAG” 123>
<COMPILATION-FLAG-VALUE MYFLAG> --> 123
<COMPILATION-FLAG-DEFAULT MYFLAG T>
<COMPILATION-FLAG-VALUE MYFLAG> --> 123

 COMPILATION-FLAG-VALUE
<COMPILATION-FLAG-VALUE atom-or-string>

ZIL library

This returns the value of the COMPILATION-FLAG atom-or-string. If no
atom-or-string is defined it returns FALSE.

Examples:

<COMPILATION-FLAG MYFLAG 123>
<COMPILATION-FLAG-VALUE MYFLAG> --> 123

<COMPILATION-FLAG-VALUE ASDFGHJKL> --> #FALSE

 COMPILING?
 <COMPILING?>

ZIL library

ZILF ignores this and always returns TRUE.

Presumably COMPILING? is used in the MDL environment to determine if the game is compiled
with ZILCH or running in the interpreter.

 COND
<COND (condition body ...) ...>

MDL built-in

COND (“conditional“) evaluates condition in each(condition body ...) and if the
condition is not FALSE it continues to evaluate all the body-parts in this LIST. COND only
evaluates the first non-FALSE condition (it ignores the rest) and returns the value of the last
performed evaluation.

- 36 -

Examples:

;"IF-THEN..."
<COND (<AND <=? 1 1> <=? 2 2>> <PRINC "IF-THEN ..."> <CRLF>)>

;"IF-THEN-ELSE..."
<COND (<AND <=? 1 1> <=? 2 2>>

<PRINC "THEN ...">
<CRLF>

)
(ELSE ;"ELSE = T, Catch-all"

<TELL "ELSE ...">
<CRLF>

)>

;"IF-THEN-ELSEIF-ELSEIF-ELSE... or SWITCH"
<SET SWITCH 2>
<COND

(<=? .SWITCH 1>
<PRINC "Variable SWITCH = 1"> <CRLF>)

(<=? .SWITCH 2>
<PRINC "Variable SWITCH = 2"> <CRLF>)

(<=? .SWITCH 3>
<PRINC "Variable SWITCH = 3"> <CRLF>)

(T
<PRINC "Variable SWITCH not in (1 2 3)"> <CRLF>)

>

;"Trigger on FIRST non-FALSE"
<COND (<SET A <>> <PRINC "Won’t execute (always FALSE)">)

(<SET A 3> <PRINC "Execute (SET returns non-FALSE)">)>

 CONS
<CONS first list>

MDL built-in

CONS (“construct”) adds first to the front of list, without copying list, and returns the
resulting LIST. References to list are not affected.

Examples:

<CONS 1 (2 3)> --> (1 2 3)

<SET S1 (!\B !\C)>
<SET S2 <CONS !\A .S1>>
<PUT .S1 2 !\D>
.S2 --> (!\A !\B !\D)

 CONSTANT
<CONSTANT atom value>

- 37 -

ZIL library

CONSTANT defines an atom with value that will never be changed. The atom can is accessed inside
a ROUTINE with GVAL (or ,) just like a GLOBAL atom. Defining a CONSTANT instead of a
GLOBAL when possible can be vital information the compiler can use for optimization.

MSETG is an alias for CONSTANT.

Example:

<CONSTANT MSG-CANT-DO-THAT "You can't do that!">
...
<TELL ,MSG-CANT-DO-THAT CR>

 CRLF
<CRLF [channel]>

MDL built-in

Prints a carriage-return and a line-feed to channel (default for channel is <LVAL OUTCHAN>;
the console). CRLF returns true.

Example:

<CRLF> --> "\n"

 DECL-CHECK
<DECL-CHECK boolean>

MDL built-in

DECL-CHECK turns off or on type declaration checking. It is initially on.

Examples:

<DECL-CHECK <>>
<GDECL (FOO) FIX>
<SETG FOO <>> --> Ok!

<DECL-CHECK T>
<SETG FOO <>> --> Error

 DECL?
<DECL? value pattern>

MDL built-in

Predicate. DECL? returns TRUE if value checks against pattern, otherwise FALSE. For the
format of the pattern, see GDECL.

Examples:
;"Simple DECL"
<DECL? 1 FIX> --> T

- 38 -

<DECL? "hi" STRING> --> T
<DECL? FOO STRING> --> #FALSE

;"OR DECL"
<DECL? 1 '<OR FIX FALSE>> --> T
<DECL? "hi" '<OR VECTOR STRING>> --> T
<DECL? FOO '<OR STRING FIX>> --> #FALSE

;"Structure DECL"
<DECL? '(1) '<LIST FIX> --> T
<DECL? '(1) '<LIST ATOM>> --> #FALSE
<DECL? '<1> '<LIST FIX>> --> #FALSE
<DECL? '<1> '<<OR FORM LIST> FIX>> --> T
<DECL? '<1> '<<OR <PRIMTYPE LIST> <PRIMTYPE STRING>> FIX>>

--> T
<DECL? '(1) '<<PRIMTYPE LIST> FIX>> --> T
<DECL? '<1> '<<PRIMTYPE LIST> FIX>> --> T

;"NTH DECL"
<DECL? '["hi" 456 789 1011] '<VECTOR STRING [4 FIX]>>

--> #FALSE
<DECL? '["hi" 456 789 1011] '<VECTOR STRING [3 FIX]>>

--> T
<DECL? '["hi" 456 789 1011] '<VECTOR [3 FIX]>> --> #FALSE
<DECL? '["hi" 456 789 1011] '<VECTOR STRING [2 FIX]>>

--> T
<DECL? '["hi" 456 789 1011] '<VECTOR STRING [2 FIX] FIX>>

--> T
<DECL? '["hi" 456 789 1011] '<VECTOR STRING [2 FIX] ATOM>>

--> #FALSE
<DECL? '(1 MONEY 2 SHOW 3 READY 4 GO) '<LIST [4 FIX ATOM]>>

--> T
<DECL? '(1 MONEY 2 SHOW 3 READY 4 GO) '<LIST [4 FIX]>>

--> #FALSE
<DECL? '(1 MONEY 2 SHOW 3 READY 4 GO)

'<LIST [3 FIX ATOM] FIX ATOM>> --> T
<DECL? '(1 MONEY 2 SHOW 3 READY 4 GO) '<LIST [3 FIX ATOM]>>

--> T

;"REST DECL"
<DECL? '["hi" 456 789 1011] '<VECTOR STRING FIX [REST FIX]>>

--> T
<DECL? '(FOO BAR) '<LIST STRING [REST FIX]>> --> #FALSE
<DECL? '(FOO BAR) '<LIST ATOM [REST FIX]>> --> #FALSE
<DECL? '(FOO BAR) '<LIST ATOM ATOM [REST FIX]>> --> T

;"OPT DECL"
<DECL? '(FOO BAR) '<LIST [OPT FIX FIX] [REST ATOM]>>

--> T

- 39 -

<DECL? '(1 FOO BAR) '<LIST [OPT FIX FIX] [REST ATOM]>>
--> T

<DECL? '(1 2 FOO BAR) '<LIST [OPT FIX] [REST ATOM]>>
--> #FALSE

<DECL? '(1 2 FOO BAR) '<LIST [OPT FIX FIX] [REST ATOM]>>
--> T

<DECL? '(1 2) '<LIST [OPT FIX FIX] [REST ATOM]>> --> T

;"QUOTE DECL"
<DECL? FOO ''FOO> --> T
<DECL? FOO ''BAR> --> #FALSE
<DECL? '<OR FIX FALSE> ''<OR FIX FALSE>> --> T
<DECL? 123 ''<OR FIX FALSE>> --> #FALSE

;"Segment DECL"
<DECL? '(1 2 3) '<LIST FIX FIX>> --> T
<DECL? '(1 2 3) '!<LIST FIX FIX>> --> #FALSE
<DECL? '(1 2) '!<LIST FIX FIX>> --> T
<DECL? '(1 2) '!<LIST [REST FIX FIX]>> --> T
<DECL? '(1 2 3) '!<LIST [REST FIX FIX]>> --> #FALSE
<DECL? '(1 2 3 4) '!<LIST [REST FIX FIX]>> --> T

;"LVAL/GVAL DECL"
<DECL? '.X LVAL> --> T
<DECL? '.X GVAL> --> #FALSE
<DECL? ',X GVAL> --> T
<DECL? ',X LVAL> --> #FALSE
<DECL? '.X '<PRIMTYPE ATOM>> --> T
<DECL? ',X '<PRIMTYPE ATOM>> --> T

 DEFAULT-DEFINITION
<DEFAULT-DEFINITION name body ...>

ZIL library

This defines a “replaceable” block with the given name.

If neither DELAY-DEFINITION nor REPLACE-DEFINITION was previously called for the
given name, then the body is evaluated, and this function returns the result of evaluating the last
element of the body.

If the block was replaced (via REPLACE-DEFINITION), the replacement body supplied earlier is
used instead.

If the block was delayed (via DELAY-DEFINITION), the body is ignored, and this function
returns FALSE.

It is possible to do the same by setting REDEFINE to true. This actually makes it possible to change
ALL definitions (it is the last one that becomes the one actually compiled).

See DELAY-DEFINITION and REPLACE-DEFINITION.

- 40 -

Examples:

<REPLACE-DEFINITION MY-ROUTINE
<ROUTINE MY-ROUTINE ()

<TELL "Replaced version of MY-ROUTINE" CR>
>

>

<DEFAULT-DEFINITION MY-ROUTINE
<ROUTINE MY-ROUTINE ()

<TELL "Original version of MY-ROUTINE" CR>
>

>

<MY-ROUTINE> --> "Replaced version of MY-ROUTINE"

;"Alternative way"
<ROUTINE MY-ROUTINE ()

<TELL "Original version of MY-ROUTINE" CR>
>

<SET REDEFINE T>
<ROUTINE MY-ROUTINE ()

<TELL "Replaced version of MY-ROUTINE" CR>
>

<SET REDEFINE <>>

<MY-ROUTINE> --> "Replaced version of MY-ROUTINE"

DEFAULTS-DEFINED
 <DEFAULTS-DEFINED>

 ZIL library

ZILF ignores this and always returns FALSE.

 DEFINE
<DEFINE name [activation] arg-list [decl] expressions ...>

MDL built-in

DEFINE assigns the global variable name with a FUNCTION. See FUNCTION for an explanation
of activation, arg-list, decl and expressions.

<DEFINE name ...> is equivalent to <SETG name #FUNCTION ...> with the exception
that DEFINE protects from overwriting a name with a new FUNCTION (this behaviour can be
changed by setting REDEFINE to true, instead of false).

Example:

<DEFINE MYADD (X1 X2) <+ .X1 .X2>>

- 41 -

<MYADD 4 5> --> 9

<DEFINE SQUARE (X) <* .X .X>>
<SQUARE 5> --> 25

<DEFINE POWER-TO ACT (X "OPT" (Y 2))
<COND (<=? .Y 0> <RETURN 1 .ACT>)>
<REPEAT ((Z 1)(I 0))

<SET Z <* .Z .X>>
<SET I <+ .I 1>>
<COND (<=? .I .Y> <RETURN .Z>)>

>
>
<POWER-TO 2 3> --> 8
<POWER-TO 3 4> --> 81
<POWER-TO 3 0> --> 1

 DEFINE-GLOBALS
<DEFINE-GLOBALS group-name

(atom-or-adecl [{BYTE | WORD}] [initializer]) ...>

ZIL libary

Defines a set of macros that can be used for global storage in Z-code, similar to global variables.

Each atom-or-adecl becomes the name of a new macro which can be called with no arguments
(to read the global value) or one argument (to write it). The optional initializer sets the initial
value, as in GLOBAL. BYTE or WORD can be specified to set the global’s size; WORD is the default.

ZILF ignores the group-name.

See FUNNY-GLOBALS? for a more convenient way to bypass the Z-machine’s global variable
limit. (In fact, ZILF implements DEFINE-GLOBALS by turning on FUNNY-GLOBALS? and
defining a global variable for each macro.)

DEFINE-SEGMENT
 <DEFINE-SEGMENT>

 ZIL library

ZILF ignores this and always returns FALSE.

 DEFINE20
<DEFINE20 name [activation] arg-list [decl] expressions ...>

ZIL library

DEFINE20 is an alias for DEFINE except that it isn’t affected by MDL-ZIL mode: it always
defines a MDL function.

DEFINE20 (and SETG20) are used in "MDL-ZIL"-files, where routines are defined with DEFINE

- 42 -

instead of ROUTINE, global variables are created with SETG instead of GLOBAL, etc. Presumably
that was a way to run the games in MDL during development to avoid recompiling them. SETG20
and DEFINE20 are aliases for the MDL versions of SETG and DEFINE.

 DEFINITIONS
<DEFINITIONS package-name>

MDL package system

DEFINITIONS is exactly as PACKAGE except that there is no internal OBLIST with
DEFINITIONS, every ATOM created inside the DEFINITIONS is on the external OBLIST
automatically.

To activate a package-name INCLUDE or INCLUDE-WHEN is used.

See END-DEFINITIONS, INCLUDE, INCLUDE-WHEN, PACKAGE and RENTRY.

Examples:

;"Define PACKAGE"
<REMOVE ANSWER> ;"Secure that ATOM not on any OBLIST"
<DEFINITIONS "FOO">
<SETG ANSWER 42>
<END-DEFINITIONS>

<TYPE? <GETPROP FOO!-PACKAGE OBLIST> OBLIST> --> OBLIST
<GASSIGNED? ANSWER> --> #FALSE
<GASSIGNED? ANSWER!-FOO!-PACKAGE> --> T
,ANSWER!-FOO!-PACKAGE --> 42

<REMOVE ANSWER> ;"Secure that ATOM not on any OBLIST"
<INCLUDE "FOO">
,ANSWER --> 42

 DEFMAC
<DEFMAC name [activation] arg-list [decl] expressions ...>

MDL built-in

DEFMAC has the same syntax as DEFINE, but defines a MACRO instead of a FUNCTION. A MACRO
is evaluated two times, the first evaluation inserts the arguments in the MACRO and creates an object
that is evaluated during the second evaluation. The first evaluation is done at “top-level”, in other
words during compilation. EXPAND is used to perform the first evaluation.

Note that two identical calls to a MACRO always generate the same result from the first evaluation.

Example:

<DEFMAC INC (ATM "OPTIONAL" (N 1))
<FORM SET .ATM

<FORM + <FORM LVAL .ATM> .N>>>
<SET X 1>
<INC X 2> --> 3

- 43 -

<EXPAND '<INC X 2>> --> <SET X <+ .X 2>>

 DEFSTRUCT
<DEFSTRUCT type-name

{base-type | (base-type struct-options ...)}
(field-name decl [field-options ...]) ...>

MDL built-in

DEFSTRUCT creates abstract record structures and creates an user-defined TYPE. In practice
DEFSTRUCT builds a couple of MACROs that can be used to create and access instances of the
structure.

type-name is the name of the new structure-type. There will also be a new TYPE with
type-name and the MACRO, MAKE-[type-name] is created that can be used to create new
instances of this new TYPE.

The base-type is the container TYPE for this new structure-type. It is usually a VECTOR, LIST
or TABLE. The struct-options are used to change the default behaviour of the base-type.
It is possible to change the default behaviour with SET-DEFSTRUCT-DEFAULT-FILE. The
struct-options are:

'CONSTRUCTOR Defines a new constructor for the MAKE- MACRO. See examples
below on how to define a new constructor. If there is no definition
specified after 'CONSTRUCTOR no MACRO will be created for this
type-name.

'INIT-ARGS Defines if there are arguments when the base-type is created. For
example (PURE) when using TABLE as a container. Default is that
there are no arguments.

'NODECL Specifies that no TYPE-checking should occur when storing values in
container base-type. Default is that there is TYPE-checking.

'NOTYPE Specifies that no new TYPE is created for this type-name. Default
is that a new TYPE is created.

Then follows all the fields in the record. Every field has a field-name and a TYPE declaration,
decl. The decl follows the ordinary syntax for declarations, see GDECL. The field-options
are optional, but they can be one or more of these:

default-value A default value for this field.
'NTH FUNCTION to read fields from the container. Default FUNCTION is

NTH.
'OFFSET Index in container to store this value.

FUNCTION is NTH.
'PUT FUNCTION to insert value in this field in the container. Default

FUNCTION is PUT.

For every field in the record there is a MACRO created with the field-name that can be used to
read and insert values in the field.

Examples:

;"Create new object"
<DEFSTRUCT BOOK LIST (TITLE STRING) (AUTHOR STRING)

- 44 -

(SUBJECT STRING) (BOOK-ID FIX)>
<SET BOOK1 <MAKE-BOOK 'TITLE "C Programming"

'AUTHOR "Nuha Ali"
'SUBJECT "C-Programming Tutorial"
'BOOK-ID 478>>

<SET BOOK2 <MAKE-BOOK 'TITLE "Telecom Billing"
'AUTHOR "Zara Ali"
'SUBJECT "C-Programming Tutorial"
'BOOK-ID 501>>

<TITLE .BOOK1> --> "C Programming"
<TYPE .BOOK1> --> BOOK
<1 .BOOK2> --> "Telecom Billing"
<AUTHOR .BOOK2 "Paul Auster">
<AUTHOR .BOOK2> --> "Paul Auster"
<MAKE-BOOK> --> ("" "" "" 0)

;"Put values into existing object"
<DEFSTRUCT POINT VECTOR (POINT-X FIX) (POINT-Y FIX)>
<SET MY-VECTOR [123 456 789 1011]>
<MAKE-POINT 'POINT .MY-VECTOR 'POINT-Y 999 'POINT-X 888>

--> [888 999 789 1011]

;"Use field value-default and offset"
<DEFSTRUCT RPOINT VECTOR (RPOINT-X FIX 'OFFSET 2)

(RPOINT-Y FIX 456 'OFFSET 1)>
<MAKE-RPOINT 'RPOINT-X 123> --> #RPOINT [456 123]
<RPOINT-Y #RPOINT [234 567]> --> 234

;"Create struct without creating TYPE"
<DEFSTRUCT PTNT (VECTOR 'NOTYPE) (PTNT-X FIX) (PTNT-Y FIX)>
<VALID-TYPE? PTNT> --> #FALSE
<PTNT-X [123 456]> --> 123

;"Create struct without declaration checks"
<DEFSTRUCT PTND (VECTOR 'NODECL) (PTND-X FIX) (PTND-Y FIX)>
<CHTYPE [FOO BAR] PTND> --> [FOO BAR]
<CHTYPE [FOO BAR] POINT> --> ERROR

;"Create struct with suppressed constructor"
<DEFSTRUCT P-C (VECTOR 'CONSTRUCTOR) (P-C FIX) (P-C-Y FIX)>
<GASSIGNED? MAKE-P-C> --> #FALSE
<VALID-TYPE? P-C> --> P-C

;"Create struct with INIT-ARGS"
<DEFSTRUCT PT-TBL (TABLE ('INIT-ARGS (PURE)))

(PT-TBL-X FIX) (PT-TBL-Y FIX)>
<MAKE-PT-TBL 123 456> --> #PT-TBL %<TABLE (PURE) 123 456>

;"Positional constructor arguments"
<DEFSTRUCT FOO VECTOR (FOO-A ATOM) (FOO-B <OR FIX FALSE>)>
<MAKE-FOO BAR> --> #FOO [BAR #FALSE ()]

;"Custom constructor"

- 45 -

<SETG NEXT-ID 0>
<DEFSTRUCT RGBA (VECTOR 'CONSTRUCTOR

('CONSTRUCTOR MAKE-RGBA
('RED 'GREEN 'BLUE "OPT" ('ALPHA 255)
"AUX" (RGBA-ID '<SETG NEXT-ID <+ ,NEXT-ID 1>>))))
(RED FIX) (GREEN FIX) (BLUE FIX) (ALPHA FIX)
(RGBA-ID FIX)>

<RED <MAKE-RGBA 10 20 30>> --> 10
<RGBA-ID <MAKE-RGBA 11 22 33>> --> 1
<ALPHA <MAKE-RGBA 11 22 33>> --> 255
<ALPHA <MAKE-RGBA 11 22 33 44>> --> 44

;"Eval or not to eval arguments"
<DEFSTRUCT E-PT VECTOR (E-PT-X FIX) (E-PT-Y <OR FIX FORM>)>
<MAKE-E-PT <+ 1 2> '<+ 3 4>> --> #E-PT [3 <+ 3 4>]

;"Explicit default values"
<DEFSTRUCT PT2 VECTOR (PT2-X FIX 123) (PT2-Y FIX 456)

(PT2-ID FIX <ALLOCATE-ID>)>
<SETG NEXT-ID 1>
<DEFINE ALLOCATE-ID ("AUX" (R ,NEXT-ID))

<SETG NEXT-ID <+ ,NEXT-ID 1>> .R>
<PT2-ID <MAKE-PT2>> --> 1
<PT2-ID <MAKE-PT2>> --> 2
<PT2-ID <MAKE-PT2 'PT2-ID 1001>> --> 1001
<PT2-ID <MAKE-PT2>> --> 3
<PT2-X <MAKE-PT2 'PT2-Y 0>> --> 123
<PT2-Y <MAKE-PT2 'PT2-Y 0>> --> 0
<PT2-ID <MAKE-PT2>> --> 6

 DELAY-DEFINITION
<DELAY-DEFINITION name>

ZIL library

DELAY-DEFINITION tells ZILF that a REPLACE-DEFINITION for name should be expected
thus the DEFAULT-DEFINITION never is evaluated for the name. This means that
REPLACE-DEFINITION can appear after the DEFAULT-DEFINITION.

DELAY-DEFINITION also means that the body of REPLACE-DEFINITION will be evaluated
at the place of REPLACE-DEFINITION.

See DEFAULT-DEFINITION and REPLACE-DEFINITION.

Examples:

;"REPLACE can be defined after DEFAULT"
<DELAY-DEFINITION FOO-ROUTINE>
<DEFAULT-DEFINITION FOO-ROUTINE <DEFINE FOO () 123>>
<REPLACE-DEFINITION FOO-ROUTINE <DEFINE FOO () 456>>

- 46 -

<FOO> --> 456

;"DELAY means that REPLACE is evaluated at right place"
<DELAY-DEFINITION BAR-ROUTINE>
<SETG BAR-RESULT 789>
<REPLACE-DEFINITION BAR-ROUTINE

<EVAL <FORM DEFINE BAR '() ,BAR-RESULT>>>
<SETG BAR-RESULT 123>
<DEFAULT-DEFINITION BAR-ROUTINE

<EVAL <FORM DEFINE BAR '() ,BAR-RESULT>>>

<BAR> --> 789 ;"123 without DELAY"

 DIR-SYNONYM
<DIR-SYNONYM original synonyms ...>

ZIL parser library

DIR-SYNONYM creates one or more synonyms to the original direction.

ZILF treats DIR-SYNONYM as an alias to SYNONYM.

 DIRECTIONS
<DIRECTIONS atoms ...>

ZIL parser library

DIRECTIONS creates words in the vocabulary with the part-of-speech DIRECTION.
DIRECTIONS are often defined in the parser and the order is usually tightly tied to the parser. Be
careful if you change these. You can use DIR-SYNONYM if you, for example, want to add FORE,
AFT, PORT and STARBOARD.

Example:

<DIRECTIONS NORTH SOUTH EAST WEST NE NW SE SW IN OUT UP DOWN>

 EMPTY?
<EMPTY? structure>

MDL built-in

Predicate. Returns true if structure contains no elements, otherwise false.

structure must be an object that STRUCTURED? evaluates to true.

Examples:

<EMPTY? [1 2 3]> --> False
<EMPTY? []> --> True

 END-DEFINITIONS
<END-DEFINITIONS>

- 47 -

MDL package system

END-DEFINITIONS is an alias to ENDBLOCK.

See DEFINITIONS.

END-SEGMENT
 <END-SEGMENT>

 ZIL library

ZILF ignores this and always returns FALSE.

 ENDBLOCK
<ENDBLOCK>

MDL built-in

ENDBLOCK pops back, rebinds and returns the local ATOM OBLIST to the state it had before the
call to BLOCK. ENDBLOCK without previous BLOCK (or PACKAGE, DEFINITIONS, etc) results in
an error.

Example:
XYZZY!-MY-OBLIST
<SETG FIRST!- FOO>
<BLOCK (<GETPROP MY-OBLIST OBLIST> <ROOT>)>
<SETG SECOND!- FOO>
<ENDBLOCK>
<=? ,FIRST!- ,SECOND!-> --> #FALSE

ENDLOAD
<ENDLOAD>

ZIL library

ZILF ignores this and always returns FALSE.

 ENDPACKAGE
<ENDPACKAGE>

MDL package system

ENDPACKAGE is an alias to ENDBLOCK.

See PACKAGE.

- 48 -

 ENDSECTION
<ENDSECTION>

MDL package system

ENDSECTION is an alias to ENDBLOCK.

See DEFINITIONS.

 ENTRY
<ENTRY atoms ...>

MDL package system

ENTRY creates/moves one or more ATOMs to the external OBLIST in a PACKAGE. ENTRY is only
valid inside a PACKAGE, if it's used outside an error is raised.

See PACKAGE, RENTRY, USE, USE-WHEN.

Examples:

<REMOVE ANSWER> ;"Secure that ATOM not on any OBLIST"
<PACKAGE "FOO">
<SETG ANSWER 42>
<1 .OBLIST> --> #OBLIST (("ANSWER" ANSWER))
<2 .OBLIST> --> #OBLIST (("IFOO" IFOO))
<ENTRY ANSWER>
<1 .OBLIST> --> #OBLIST ()
<2 .OBLIST> --> #OBLIST (("IFOO" IFOO) ("ANSWER" ANSWER))
<ENDPACKAGE>

,ANSWER --> 42

 EQVB
<EQVB numbers ...>

MDL built-in

Bitwise equivalence (inverse of exclusive “or”). Uses 32-bit.

Examples:

<XORB 250 245> --> 00000000 00000000 00000000 11111010
00000000 00000000 00000000 11110101

11111111 11111111 11111111 11110000 = -16

 ERROR
<ERROR values ...>

- 49 -

MDL built-in

ERROR raises an error ([error MDL0001]) and listing values as resources. The values are
usually a text explaining the error, offending ATOM, routine where it occurred and last any other
information.

Example:

<SET A 616>
<ERROR "MY TYPE OF ERROR." .A>

-->
[error MDL0001] <stdin>:1: ERROR: "MY TYPE OF ERROR." 616

 EVAL
<EVAL value [environment]>

MDL built-in

This evaluates value (usually a FORM created by FORM or QUOTE).

It is possible to supply an environment for EVAL. This tells EVAL from which environment
EVAL should take variable bindings. See The MDL Programming Language, chap. 9.7 for more
about the environment.

Examples:

<SET F '<+ 1 2>>

.F --> <+ 1 2>
<EVAL .F> --> 3

<SET A 0>
<DEFINE WRONG ('B "AUX" (A 1)) <EVAL .B>>
<DEFINE RIGHT ("BIND" E 'B "AUX" (A 1)) <EVAL .B .E>>

<WRONG .A> --> 1
<RIGHT .A> --> 0

EVAL-IN-SEGMENT
 <EVAL-IN-SEGMENT dummy1 value[dummy2]>

ZIL library

ZILF ignores dummy1 and the optional dummy2. ZILF then calls EVAL on the value and returns
its result.

Example:

<SET F '<+ 1 2>>

 .F --> <+ 1 2>
<EVAL-IN-SEGMENT "HINTS" .F (1 2 3)> --> 3

- 50 -

 EVALTYPE
<EVALTYPE atom [handler]>

MDL built-in

EVALTYPE tells the TYPE atom how it should be evaluated by EVAL. If EVALTYPE is called
without a handler then the currently active handler is returned. If there is no active handler,
FALSE is returned.

Note that it is possible to replace the handler with a new handler, even on the predefined
TYPEs.

See APPLYTYPE, NEWTYPE and PRINTTYPE.

Example:

<NEWTYPE GRITCH LIST>
<EVALTYPE GRITCH> --> #FALSE
<EVALTYPE GRITCH LIST> ;"Evaluate GRITCH as a LIST"
<EVALTYPE GRITCH> --> LIST
#GRITCH (A <+ 1 2 3> !<SET A "BC">) --> (A 6 !\B !\C)

;"Make it like LISP!"
<EVALTYPE LIST FORM> ;"Evaluate LISTs as FORMs!"
<EVALTYPE ATOM ,LVAL> ;"Evaluate bare ATOM as LVAL!"
(+ 1 2) --> 3
(SET 'A 5)
A --> 5

 EXPAND
<EXPAND value>

MDL built-in

EXPAND performs the first EVAL of the value. In case the value is a MACRO only the first EVAL
is done.

Example:

<DEFMAC INC2 (ATM "OPTIONAL" (N 1))
<PARSE "<SET %.ATM <+ %.ATM %.N>>">>

<EXPAND '<INC2 X>> --> <SET X <+ X 1>>

 FILE-FLAGS
<FILE-FLAGS {CLEAN-STACK? | MDL-ZIL? | SENTENCE-ENDS? |

ZAP-TO-SOURCE-DIRECTORY?} ...>

ZIL library

This sets flags to control how ZILF should compile. To clear, call FILE-FLAGS without any flags.

- 51 -

The flags are:

CLEAN-STACK? Tells the compiler to generate extra code to remove
unneeded values from the stack. Without it, the
compiler will generate smaller code in some cases, at
the risk of potentially causing stack overflow at
runtime.

MDL-ZIL? Tells the compiler to treat SETG (at top-level) as
GLOBAL and DEFINE as ROUTINE (SETG20 and
DEFINE20 always works as in MDL). Presumably
that was a way to run the games in MDL during
development without recompiling them.

SENTENCE-ENDS? Tells the compiler (only version 6) to treat two spaces
after a period or a question mark as the end of a
sentence in TELL.
Note: a space followed by an embedded newline wil
produce two spaces instead of collapsing.

ZAP-TO-SOURCE-DIRECTORY? ZILF ignores this.

Examples:

<FILE-FLAGS CLEAN-STACK? MDL-ZIL?> --> Set both flags

<FILE-FLAGS MDL-ZIL?>
<SETG X 123> ;"This compiles as GLOBAL"
<DEFINE MDL-ZIL-TEST () <TELL N X CR>> ;"This compiles as a

ROUTINE"

<FILE-FLAGS SENTENCE-ENDS?>
<ROUTINE SENTENCE-ENDS-TEST ()

<TELL \"Hi. Hi. Hi.| Hi! Hi? Hi. \nHi.\" CR>">
--> "Hi.\u000bHi.\u000b Hi.\n Hi!\u000bHi?\u000bHi. Hi.\n"

 FILE-LENGTH
<FILE-LENGTH channel>

MDL built-in

FILE-LENGTH returns the size, in bytes, of the file on channel. FILE-LENGTH returns FALSE
if the file is closed.

Example:

;"ZILF ver 0.9"
<SET CH <OPEN "READ" "../zillib/parser.zil">>
<FILE-LENGTH .CH> --> 115629
<CLOSE .CH>

 FLOAD
<FLOAD filename>

MDL built-in

- 52 -

ZILF ignores all but the first argument and treats FLOAD as an alias to INSERT-FILE.

 FORM
<FORM values ...>

MDL built-in

This creates a FORM without evaluating it. This is analogous to LIST and VECTOR but with "<>"
instead of "()" or "[]". In many cases it is possible to use QUOTE to achieve the same result.

Examples:

<FORM + 1 2> --> <+ 1 2>

<DEFINE INC-FORM (A)
<FORM SET .A <FORM + 1 <FORM LVAL .A>>>>

<INC-FORM X> --> <SET X <+ 1 .X>

FREQUENT-WORDS?
 <FREQUENT-WORDS?>

 ZIL library

ZILF ignores this and always returns FALSE. Frequent words table is built by ZAPF instead.

 FUNCTION
<FUNCTION [activation] arg-list [decl] expressions ...>
#FUNCTION ([activation] arg-list [decl] expressions ...)

MDL built-in

This creates a FUNCTION. When a FUNCTION is called it evaluates all the expressions and
returns the result of the last expression.

The arg-list is a LIST of arguments for the FUNCTION. Besides the arguments to the
FUNCTION, arg-list can also contain these tokens (in this order):

"BIND" Followed by an ATOM that binds the ATOM to the ENVIRONMENT
when the FUNCTION was applied. See EVAL for example on this.

Arguments The required arguments for this FUNCTION. The arguments are
bound to local variables inside this FUNCTION.

"OPT" The optional arguments for this FUNCTION. The arguments are
bound to local variables inside this FUNCTION and can be defined with
a default value. "OPTIONAL" is an alias for "OPT".

"ARGS" Followed by an ATOM that is bound a LIST of all remaining arguments,
unevaluated. If "ARGS" appears in arg-list, "TUPLE" should not appear.

"TUPLE" Followed by an ATOM that is bound a TUPLE of all remaining arguments,
evaluated. If "TUPLE" appears in arg-list, "ARGS" should not appear.
See TUPLE for example on this.

- 53 -

"AUX" Followed by any number of ATOMs that becomes local variables inside
this FUNCTION and can be defined with a default value. "EXTRA"
is a alias for "AUX".

"NAME" Followed by an ATOM that becomes the activation for this FUNCTION.
This is equivalent to naming the activation before the arg-list.
"ACT" is an alias for "NAME". See AGAIN for example on this.

Default values for "OPT" and "AUX" are defined by a two-element LIST whose first element is
the ATOM and the second element is assigned to.

<FUNCTION ("AUX" (X 1) (Y 2)) <+ .X .Y>>

Means that the local variables X and Y are initially assigned 1 and 2.

FUNCTION is its own TYPE and it is perfectly legal to, for example, use #FUNCTION instead to
create a FUNCTION.

Usually a FUNCTION is assigned to a global variable. This can be done by assigning a global ATOM
the FUNCTION with SETG (this is more commonly done with DEFINE).

Examples:

<<FUNCTION (X1 X2) <+ .X1 .X2>> 5 4> --> 9

<SETG SQUARE <FUNCTION (X) <* .X .X>>>
<SQUARE 5> --> 25

<SETG POWER-TO <FUNCTION ACT (X "OPT" (Y 2))
<COND (<=? .Y 0> <RETURN 1 .ACT>)>
<REPEAT ((Z 1)(I 0))

<SET Z <* .Z .X>>
<SET I <+ .I 1>>
<COND (<=? .I .Y> <RETURN .Z>)>

>
>>
<POWER-TO 2 3> --> 8
<POWER-TO 3 4> --> 81
<POWER-TO 3 0> --> 1

 FUNNY-GLOBALS?
<FUNNY-GLOBALS? [boolean]>

ZIL library

When enabled, “funny globals” mode lets the game define more than the usual 240 global variables.

If needed, ZILF will move the extra variables into a table (GLOBAL-VARS-TABLE) and generate
table instructions to access them (PUT and GET, or in the case of BYTE globals created with
DEFINE-GLOBALS, PUTB and GETB).

This translation is mostly transparent to game source code, but it can’t be used for global variables
that are ever referenced indirectly by number. ZILF uses a simple heuristic to try to identify those
variables and reserve “real” global variable slots for them.

- 54 -

 G=?
<G=? value1 value2>

MDL built-in

Predicate. True if value1 is greater or equal than value2 otherwise false.

 G?
<G? value1 value2>

MDL built-in

Predicate. True if value1 is greater than value2 otherwise false.

 GASSIGNED?
<GASSIGNED? Atom>

MDL built-in

Predicate. Returns true if the atom has an GVAL (global value).

Example:

<GASSIGNED? X> --> False
<SETG X 1>
<GASSIGNED? X> --> True

 GBOUND?
<GBOUND? atom>

MDL built-in

GBOUND? Is a predicate that returns true if the atom ever had a global value.

Examples:

<SETG X 42>
<GASSIGNED? X> --> True
<GBOUND? X> --> True
<GUNASSIGN X>
<GASSIGNED? X> --> False
<GBOUND? X> --> True

 GC
<GC>

MDL built-in

- 55 -

This causes garbage collection.

In ZILF GC ignores all arguments and always returns true. ZILF relies on the garbage collection in
the NET framework and only implements this for compatibility.

Examples:

<GC> --> T

<GC 0 T 5> --> T

 GC-MON
<GC-MON>

MDL built-in

ZILF ignores this and always returns FALSE.

 GDECL
<GDECL (atoms ...) decl ...>

MDL built-in

GDECL declares the type/structure of the global value of ATOMs. GDECL pairs a LIST of atoms
with a decl pattern, this can then be repeated indefinitely.

The decl pattern can contain the following:

A TYPE name The atoms TYPE must be of this TYPE. This can be generalized
slightly by using <PRIMTYPE type>, which means that the atoms
TYPE must have the same PRIMTYPE as type.

ANY The atom can be of any TYPE.
STRUCTURED Means that <STRUCTURED? atom> must be TRUE (atom is for

example a LIST, VECTOR or STRING).
APPLICABLE Means that <APPLICABLE? atom> must be TRUE (atom is for

example a FIX, FUNCTION or MACRO).
A QUOTEd ATOM Means that the atom must be =? with the QUOTEd ATOM.

If the decl pattern is STRUCTURED it is possible to specify a pattern for the structure. This has
the following syntax:

<structure patterns ...> This means that the structure must follow the
defined pattern (so long it is defined). Items in the
structure at positions beyond the defined
pattern can be of any TYPE.

This means that, for example, <GDECL (X) <LIST FIX ANY FIX>> is declaring that X must
be a LIST (at least of LENGTH 3), with a FIX in position 1 and 3 and any TYPE in position 2 and
position 4 and beyond.

<SETG X (1 2 3)> is legal
<SETG X (1 2 3 4)> is legal
<SETG X (1 2 3 !\A)> is legal
<SETG X (1 2)> is illegal

- 56 -

<SETG X (!\A 2 3)> is illegal

Normally the pattern for structures defines that the structure should at least contain these elements,
but it can contain additional items. If you want to disallow additional items , a SEGMENT is used
instead of a FORM. <GDECL (X) !<LIST FIX ANY FIX>> means that the LIST must have
exactly LENGTH 3.

<SETG X (1 2 3)> is legal
<SETG X (1 2 3 4)> is illegal
<SETG X (1 2 3 !\A)> is illegal
<SETG X (1 2)> is illegal
<SETG X (!\A 2 3)> is illegal

The pattern in this construction can in turn be defined to repeat itself by the syntax:

[number patterns ...] Means that specified pattern should repeat itself
number of times.

[REST patterns ...] Means that specified pattern should repeat itself
indefinitely. If this is defined it must be the last
in the structure declaration.

[OPT patterns ...] Means that this structure can either be empty or
follow the defined pattern. Only a REST
construction can follow OPT.

Finally, it is allowed to specify several possible decl to an atom with the compound decl OR.

<OR decl ...> This means that the atoms can be one of the specified decl. Each
of the decl follow the same rules as above.

Examples:

X must be:
<GDECL (X) FIX> --> FIX
<GDECL (X) <OR FIX STRING>> --> FIX or STRING
<GDECL (X) <LIST FIX> --> LIST with FIX in pos 1
<GDECL (X) <LIST [3 FIX]> --> LIST with FIX in pos 1-3
<GDECL (X) <LIST [REST FIX]> --> LIST with only FIX
<GDECL (X) <LIST [OPT FIX] [REST FIX]>>

--> Empty LIST or LIST containing FIX

See DECL? for more examples on how to format decl.

 GET-DECL
<GET-DECL item>

MDL built-in

GET-DECL returns the pattern defined to the item. It returns FALSE if no item exists.

See DECL?, GDECL and PUT-DECL for more on declaration patterns.

Examples:

<GET-DECL BOOLEAN> --> #FALSE

- 57 -

<PUT-DECL BOOLEAN '<OR ATOM FALSE>>
<GET-DECL BOOLEAN> --> <OR ATOM FALSE>

 GETB
<GETB table index>

ZIL library

Returns BYTE-record (1 byte) stored at index.

TABLE is a ZIL-specific structure that can be used both outside and inside ROUTINES. GETB is
equivalent to the Z-code built-in GETB.

Also see PUTB, ZGET, ZPUT and ZREST.

Example:

<GETB <TABLE (BYTE) !\A !\B !\C !\D> 2> --> !\C

 GETPROP
<GETPROP item indicator [default-value]>

MDL built-in

GETPROP returns the property-value stored under indicator on item. If no value can be found
GETPROP returns the default-value or FALSE if no default-value is given.

See ASSOCIATIONS, AVALUE, INDICATOR, ITEM, NEXT and PUTPROP.

Examples:

<PUTPROP FOO BAR BAZ>
<GETPROP FOO BAR> --> BAZ
<GETPROP FOO BAZ> --> #FALSE
<GETPROP FOO BAZ "Value not found."> --> "Value not found."

<SET L (1 2 3)>
<PUTPROP .L FOO 456>
.L --> (1 2 3)
<GETPROP .L FOO> --> 456

 GLOBAL
<GLOBAL atom default-value [decl] [size]>

ZIL library

Declare a global variable atom, that later can be used inside a ROUTINE. The variable is initialized
with default-value.

ZILF ignores the decl.

Example:

- 58 -

<GLOBAL MYVAR 0>

 GROW
<GROW vector end beginning>

MDL built-in

GROW expands the vector with end and/or beginning number of elements to respectively end
of the vector. Only non-negative values for end and beginning are valid. The new elements have
FALSE as an initial value.

If elements are added to the beginning of a vector all old references to that vector have to
use TOP or BACK to access the new elements.

Examples:

<SET V1 [1 2 3]>
<SET V2 <GROW .V1 1 1>>
<LVAL V1> --> [1 2 3 #FALSE ()]
<LVAL V2> --> [#FALSE () 1 2 3 #FALSE ()]
<2 .V1 4>
<LVAL V1> --> [1 4 3 #FALSE ()]
<LVAL V2> --> [#FALSE () 1 4 3 #FALSE ()]
<TOP .V1> --> [#FALSE () 1 4 3 #FALSE ()]

 GUNASSIGN
<GUNASSIGN atom>

MDL built-in

Unassign global atom.

Example:

<SETG X 1>
<GASSIGNED? X> --> True
<GUNASSIGN X>
<GASSIGNED? X> --> False

 GVAL
<GVAL atom>
,atom ;"Alternative syntax"

MDL built-in

Get the value of the global atom. More often used in its short form ",atom".

Example:

<SETG X 5>

- 59 -

<GVAL X> --> 5
,X --> 5

 IFFLAG
<IFFLAG (condition body ...) ...>

ZIL library

Each condition is either:

● A STRING naming a compilation flag, to evaluate the corresponding body if the flag’s
value is true.

● An ATOM whose PNAME names a compilation flag, to evaluate the corresponding body if
the flag’s value is true.

● A FORM, to evaluate the FORM after replacing any element ATOMs whose PNAMEs name
compilation flags with the flag values, and then evaluate the corresponding body if the
result is true.

● Any other value, to evaluate the corresponding body immediately.

As soon as any body is evaluated, the function returns the result. If no body is evaluated, the
function returns FALSE.

Note: as a consequence of the evaluation rules above, undefined compilation flags are effectively
TRUE.

Example:

<COMPILATION-FLAG MYFLAG <>>
<IFFLAG (MYFLAG <SETG FOO "NOT OFF">) (T <SETG FOO "OFF">)>
,FOO --> "OFF"

 ILIST
<ILIST count [init]>

MDL built-in

ILIST ("implicit" or "iterated") returns a LIST with count items all set to init.

Examples:

<ILIST 4 2> --> (2 2 2 2)

<SET A 0>
<ILIST 4 '<SET A <+ .A 1>>> --> (1 2 3 4)

 IMAGE
<IMAGE ch [channel]>

MDL built-in

IMAGE prints the actual raw character with number ch to channel. No extra characters are ever

- 60 -

printed. IMAGE returns ch.

Example:

<DEFINE FOO ()
<IMAGE 70>
<IMAGE 79>
<IMAGE 79>
<CRLF>>

<FOO> --> "FOO"

 INCLUDE
<INCLUDE package-name ...>

MDL package system

INCLUDE activates one or many package-names and makes its content available in the current
OBLIST-path. In practice INCLUDE copies the OBLIST package-name and adds it last to the
local OBLIST (<LVAL OBLIST>). This means that all ATOMs on the DEFINITIONS OBLIST
becomes available in current environment.

If the package-name is not available in the current environment, INCLUDE tries to load
“package-name.zil” from the current path.

INCLUDE only works together with DEFINITIONS and if the definition of the package-name
is missing from the environment or no file is found containing that definition is found, an error is
raised.

See DEFINITIONS and INCLUDE-WHEN.

Example:

<INCLUDE "FOOFOO"> ;"Searches for file "foofoo.zil" which
contains the definition for
<DEFINITIONS "FOOFOO"> ..."

 INCLUDE-WHEN
<INCLUDE-WHEN condition package-name ...>

MDL package system

INCLUDE-WHEN is exactly like INCLUDE but only activates the package-name if the
condition evaluates to TRUE.

See DEFINITIONS and INCLUDE.

Example:

<DEFINITIONS "FOO">
<SETG AAAA 1234>
<END-DEFINITIONS>

<GASSIGNED? AAAA> --> #FALSE
<REMOVE AAAA> ;"Secure that ATOM not on any OBLIST"

- 61 -

<INCLUDE-WHEN <=? 1 2> "FOO">
<GASSIGNED? AAAA> --> #FALSE
<REMOVE AAAA> ;"Secure that ATOM not on any OBLIST"
<INCLUDE-WHEN <=? 1 1> "FOO">
,AAAA --> 1234

 INDENT-TO
<INDENT-TO position [channel]>

ZIL library

INDENT-TO places the cursor at the position on channel. Default value for the channel is
.OUTCHAN (the console).

Example:

<DEFINE PRINT-2-COL (LST)
<REPEAT ((I 0))

<SET I <+ .I 1>>
<COND (<G? .I <LENGTH .LST>> <RETURN>)>
<COND (<1? <MOD .I 2>>

<INDENT-TO 3>
<PRINC <.I .LST>>)

(T <INDENT-TO 15>
<PRINC <.I .LST>>
<CRLF>)>>

<CRLF>>

<PRINT-2-COL ("Apple" "Banana" "Orange" "Lime")>
--> Apple Banana

Orange Lime

 INDEX
<INDEX offset>

MDL built-in

INDEX returns the index-part of an OFFSET.

Example:

<SETG OFF3 <OFFSET 3 '<VECTOR> 'STRING>>
<INDEX ,OFF3> --> 3

 INDICATOR
<INDICATOR asoc>

MDL built-in

INDICATOR returns the indicator part from an asoc entry, of TYPE ASOC, in the ASSOCIATION

- 62 -

chain.

See ASSOCIATIONS, AVALUE, GETPROP, ITEM, NEXT and PUTPROP.

Example:

<DEFINE LAST-ASOC ()
<REPEAT ((A <ASSOCIATIONS>))

<COND (<=? .A <>> <RETURN <>>)
(<=? <NEXT .A> <>> <RETURN .A>)>

<SET A <NEXT .A>>>>

<PUTPROP NEW-ASOC TEXT "Hello, world!">
<SET A <LAST-ASOC>>
<INDICATOR .A> --> TEXT

 INSERT
<INSERT atom | pname oblist>

MDL built-in

INSERT creates an ATOM with the pname and inserts it into oblist. INSERT returns the newly
created ATOM (or raises an error if the ATOM already was on the oblist). First argument can also
be an atom but this ATOM can not be on any OBLIST and therefore must be newly created by
ATOM or recently REMOVEd.

INSERT requires that you specify oblist, if you want to create an ATOM on the standard
OBLIST, usually <1 .OBLIST>, you can use <PARSE string> instead.

Note that you also can use trailers to both create the ATOM and the OBLIST (or one of them).
atom!-oblist inserts the atom on the oblist and if one of them or both don’t exist, they are
created.

Examples:

<INSERT "FOO-1" <MOBLIST OB>> --> FOO-1!-OB

<INSERT <ATOM "FOO-2"> <MOBLIST OB>> --> FOO-2!-OB
<INSERT <REMOVE "FOO-2" <MOBLIST OB>> <MOBLIST OB2>>

--> FOO-2!-OB2

<INSERT FOO-3 <MOBLIST OB>>
--> Error (Interpreter already placed it on <1 .OBLIST>

;"Returns FOO from OB. Creates ATOM/OBLIST if needed."
<OR <LOOKUP "FOO" <MOBLIST OB>> <INSERT "FOO" <MOBLIST OB>>

--> FOO!-OB

FOO!-OB --> FOO!-OB
BAR!-OB --> BAR!-OB
<MOBLIST OB> --> #OBLIST (("FOO" FOO!-OB) ("BAR" BAR!-OB))

 INSERT-FILE
<INSERT-FILE filename>

- 63 -

ZIL library

Insert file with filename at this point. If extension is omitted, ".zil" is assumed.

The filename can have an absolute or relative path. If no path is given, the compiler looks in the
current library and the libraries specified to the compiler with the -ip switch.

Note that path is specified like in Linux (forward slashes etc.) and uppercase/lowercase can be
significant, depending on the host system.

ZILF ignores all but the first argument.

Examples:

<INSERT-FILE "rooms"> --> Include "rooms.zil" from
current directory

<INSERT-FILE "zillib/parser"> --> Include "parser.zil" from
subdir "zilllib"

 ISTRING
<ISTRING count [init]>

MDL built-in

ISTRING ("implicit" or "iterated") returns a STRING with count items all set to init
(character).

Examples:

<ISTRING 4 !\A> --> "AAAA"

<SET A 64>
<ISTRING 4 '<ASCII <SET A <+ .A 1>>>> --> "ABCD"

 ITABLE
<ITABLE [specifier] count [(flags...)] defaults ...>

ZIL library

Defines a table of count elements filled with default values: either zeros or, if the default list is
specified, the specified list of values repeated until the table is full.

The optional specifier may be the atoms NONE, BYTE, or WORD. BYTE and WORD change the
type of the table and also turn on the length marker (element 0 in the table contains the length of the
table), This can also be done with the flags (see TABLE about flags).

Examples:

<ITABLE 4 0> -->

Element 0
WORD

Element 1
WORD

Element 2
WORD

Element 3
WORD

0 0 0 0

- 64 -

<ITABLE 4 (BYTE LENGTH) 0> -->

Element 0
BYTE

Element 1
BYTE

Element 2
BYTE

Element 3
BYTE

Element 4
BYTE

4 0 0 0 0

<ITABLE BYTE 4 0> -->

Element 0
BYTE

Element 1
BYTE

Element 2
BYTE

Element 3
BYTE

Element 4
BYTE

4 0 0 0 0

Syntax Resulting byte array
------ --------------------

<ITABLE 3> or [0 0 0 0 0 0]
<ITABLE NONE 3> 3x#WORD

<ITABLE 3 1> or [0 1 0 1 0 1]
<ITABLE NONE 3 1> 3x#WORD

<ITABLE 3 (LENGTH) 1> or [0 3 0 1 0 1 0 1]
<ITABLE 3 (LENGTH WORD) 1> or #WORD + 3x#WORD
<ITABLE WORD 3 1>

<ITABLE 3 (BYTE) 1> [1 1 1] 3x#BYTE

<ITABLE 3 (LENGTH BYTE) 1> or [3 1 1 1 1]
<ITABLE BYTE 3 1> #BYTE + 3x#BYTE

<ITABLE 3 (LEXV) 1 2 3> [0 1 2 3 0 1 2 3 0 1 2 3]
3x(#WORD #BYTE #BYTE)

<ITABLE 3 (LENGTH LEXV) 1 2 3> [0 9 0 1 2 3 0 1 2 3 0 1 2 3]
#WORD + 3x(#WORD #BYTE #BYTE)

TABLE is a ZIL-specific structure that can be used both outside and inside ROUTINES.

 ITEM
<ITEM asoc>

MDL built-in

ITEM returns the item part from an asoc entry, of TYPE ASOC, in the ASSOCIATION chain.

See ASSOCIATIONS, AVALUE, GETPROP, INDICATOR, NEXT and PUTPROP.

Example:

- 65 -

<DEFINE LAST-ASOC ()
<REPEAT ((A <ASSOCIATIONS>))

<COND (<=? .A <>> <RETURN <>>)
(<=? <NEXT .A> <>> <RETURN .A>)>

<SET A <NEXT .A>>>>

<PUTPROP NEW-ASOC TEXT "Hello, world!">
<SET A <LAST-ASOC>>
<ITEM .A> --> NEW-ASOC

 IVECTOR
<IVECTOR count [init]>

MDL built-in

IVECTOR ("implicit" or "iterated") returns a VECTOR with count items all set to init.

Examples:

<IVECTOR 4 2> --> [2 2 2 2]

<SET A 0>
<IVECTOR 4 '<SET A <+ .A 1>>> --> [1 2 3 4]

 L=?
<L=? value1 value2>

MDL built-in

Predicate. True if value1 is lower or equal than value2 otherwise false.

 L?
<L? value1 value2>

MDL built-in

Predicate. True if value1 is lower than value2 otherwise false.

 LANGUAGE
<LANGUAGE name [escape-char] [change-chrset]>

ZIL library

The language setting changes how text is encoded in two ways: it lets you write language-specific
characters in ZIL source code by adding a prefix to ASCII characters, and it changes the Z-machine
alphabet to encode them more efficiently.

If change-chrset is false, the Z-machine character set won’t be changed, so the language
setting will only affect how source code is read.

- 66 -

The escape-char is !\% by default, meaning that language-specific characters may be used in
strings or atoms by adding a percent sign prefix (e.g. %s for ß).

The name may be GERMAN, or DEFAULT to stick with classic ZSCII.

GERMAN is defined as follows:

● Alphabet 0: abcdefghiklmnoprstuwzäöü.,
● Alphabet 1: ABCDEFGHIKLMNOPRSTUWZjqvxy
● Alphabet 2: 0123456789!?'-:()JÄÖÜß«»
● Special characters: ä(%a), ö(%o), ü(%u), ß(%s), Ä(%A), Ö(%O),

Ü(%U), «(%<), »(%>)

 LEGAL?
<LEGAL? value>

MDL built-in

LEGAL? is a predicate that returns TRUE if portion of the stack value occupies is still active,
otherwise FALSE. Although LEGAL? works for all TYPEs, it’s only useful for those TYPEs that
live on the stack, like TUPLE, activation and environment, all other types always return
TRUE.

Examples:

;"Activation"
<DEFINE FOO ACT () <SETG ACT .ACT> <LEGAL? .ACT>>
<FOO> --> T ;"ACT legal inside function"
<LEGAL? ,ACT> --> #FALSE ;"ACT illegal outside function"

;"Environment"
<DEFINE BAR () <BAZ>>
<DEFINE BAZ ("BIND" ENV) <SETG ENV .ENV> <LEGAL? .ENV>>
<BAR> --> T ;"Sets ENV to BARs environment"
<LEGAL? ,ENV> --> #FALSE ;"BARs environment illegal"
<BAZ> --> T ;"Sets ENV to ROOT environment"
<LEGAL? ,ENV> --> T ;"ROOTs environment always legal"

 LENGTH
<LENGTH structure>

MDL built-in

Return the number of elements in structure.

structure must be an object that STRUCTURED? evaluates to true.

Note that TABLE is not a structure.

Also see BACK, NTH, PUT, REST, SUBSTRUC and TOP.

Example:

<LENGTH <LIST 1 2 3>> --> 3

- 67 -

 LENGTH?
<LENGTH? structure limit>

MDL built-in

LENGTH? is a predicate that returns false if LENGTH of structure is greater than limit,
otherwise true (it actually returns LENGTH of structure).

LENGTH? answers the question: "is LENGTH of structure less or equal to limit?"

Examples:

<LENGTH? (1 2 3) 1> --> False
<LENGTH? (1 2 3) 3> --> 3
<NOT <NOT <LENGTH? (1 2 3) 4>>> --> True

 LINK
<LINK value str oblist>

MDL built-in

LINK links a value to PNAME str. The PNAME is placed in the specified oblist. LINK has the
effect that when the MDL encounters the str it immediately replaces it with the value. LINK is
primarily used in interactive mode to replace phrases that are annoyingly long to type.

Example:

<LINK '<INSERT-FILE "HEDGEMAZE"> "H" <ROOT>>
H --> Tries to load the file "HEDGEMAZE"

 LIST
<LIST values ...>
(values ...) ;"Alternative syntax"

MDL built-in

Returns a list of containing values.

A list is a collection of items where each item has a pointer to the next item in the collection. This
makes it easy to add and insert items in lists but a list is always forward looking. See more about
LIST structure in The MDL Programming Language, Appendix 1.

Example:

<LIST 1 2 "AB" !\C> --> (1 2 "AB" !\C)
(1 2 "AB" !\C) --> (1 2 "AB" !\C)

 LONG-WORDS?
<LONG-WORDS? [boolean]>

ZIL library

- 68 -

The boolean , which defaults to true if omitted, tells the compiler whether to generate the
CONSTANT LONG-WORDS-TABLE.

LONG-WORDS-TABLE contains an entry for each vocab word whose length exceeds the maximum
word length for the selected Z-machine version (6 Z-characters for V3, or 9 Z-characters for V4+).
The table is prefixed by the number of entries, and each entry consists of a word pointer followed
by a string giving the printed form of the word.

For example, the table might be defined as equivalent to:

<CONSTANT LONG-WORDS-TABLE
<TABLE 2

,W?HEMIDEMIS "hemidemisemiquaver"
,W?SUPERCALI "supercalifragilisticexpialidocious">>

Example:

<VERSION 5>

<LONG-WORDS? T>

<OBJECT FOO (SYNONYM HEMIDEMISEMI)>

<VOC "SUPERCALIFRAG">

<ROUTINE GO ()
<TELL "Table length = " N <GET ,LONG-WORD-TABLE 0> CR>
<TELL "W?SUPERCALIFRAG = " N ,W?SUPERCALIFRAG CR>
<TELL "WORD 1 = " N <GET ,LONG-WORD-TABLE 1> CR>
<TELL "WORD 2 = " <GET ,LONG-WORD-TABLE 2> CR>
<TELL "W?HEMIDEMISEMI = " N ,W?HEMIDEMISEMI CR>
<TELL "WORD 3 = " N <GET ,LONG-WORD-TABLE 3> CR>
<TELL "WORD 4 = " <GET ,LONG-WORD-TABLE 4> CR>

>

 LOOKUP
<LOOKUP string oblist>

MDL built-in

LOOKUP returns the ATOM with PNAME string from oblist. It returns FALSE if no ATOM is
found.

Examples:

<LOOKUP "FIX" <ROOT>> --> FIX

FOO!-MYOBLIST
<LOOKUP "FOO" <ROOT>> --> #FALSE
<LOOKUP "FOO" <MOBLIST MYOBLIST>> --> FOO!-MYOBLIST

 LPARSE
<LPARSE text [10] [lookup-oblist]>

- 69 -

MDL built-in

LPARSE ("list parse") is just like PARSE with the exception that LPARSE returns a LIST of all the
expressions in the text.

ZILF requires that the second argument is 10 if a lookup-oblist is given.

Examples:

<LPARSE "1 FOO [3]"> --> (1 FOO [3])

<LPARSE " "> --> ()

<SET A 0>
<DEFINE NXT () <SET A <+ .A 1>>>
<LPARSE "%<NXT> %<NXT> %<NXT>"> --> (1 2 3)

 LSH
<LSH number places>

MDL built-in

Bitwise shift. Shift number left when places is positive and right if it is negative. When right
shifting the sign is not preserved (0 is always shifted in).

1000 0000 0000 1010 --> 0100 0000 0000 0101

Examples:

<LSH 4 1> --> 8
<LSH 4 -2> --> 1

 LTABLE
<LTABLE [(flags ...)] values ...>

ZIL library

Defines a table containing the specified values and with the LENGTH flag (see TABLE about
LENGTH and other flags).

TABLE is a ZIL-specific structure that can be used both outside and inside ROUTINES.

 LVAL
<LVAL atom [environment]>
.atom ;"Alternative syntax"

MDL built-in

Get the value of the local atom. More often used in its short form ".atom".

It is possible to supply an environment for LVAL. See EVAL for more about the
environment.

- 70 -

Example:

<SET X 5>

<LVAL X> --> 5
.X --> 5

 M-HPOS
<M-HPOS channel>

ZIL library

M-HPOS returns the current horizontal cursor position on channel.

Example:

<PRINC "Hello"><M-HPOS .OUTCHAN> --> Hello5

MAKE-GVAL
<MAKE-GVAL atom>

ZIL library

MAKE-GVAL returns the atom as GVAL (,atom).

Example:

<SET FOO BAR>
<SETG BAR 123>
<MAKE-GVAL .FOO> --> ,BAR
<EVAL <MAKE-GVAL .FOO>> --> 123

 MAPF
<MAPF finalf applicable structs ...>

MDL built-in

MAPF ("map first") traverses over all structs one element at a time until one of the structs is
out of elements and calls the function applicable with the elements. In other words, the first
iteration takes the first element from each of the structs and calls applicable, the second
iteration takes the second element from each of the structs and calls applicable, and so on
until one of the structs doesn't have any more elements. The intermediate results from each call
to applicable is stored in a TUPLE.

The finalf can either be a FUNCTION or <> (FALSE). If it is FALSE the TUPLE with the
intermediate result is thrown away, otherwise finalf is called with the TUPLE.

MAPF returns the result from finalf. If finalf is FALSE, MAPF returns the result from the last
call to applicable. If applicable never was called (one of the structs was empty) MAPF
returns FALSE.

One special case is if only finalf and applicable are given. In this case applicable is

- 71 -

called indefinitely with no arguments until a MAPLEAVE or MAPSTOP is invoked. finalf is
called if MAPSTOP is used to leave the iteration.

Examples:

<MAPF ,VECTOR ,+ (1 2 3) [10 11 12]> --> [11 13 15]

<MAPF ,STRING 1
["Zil" "is" "lots of" "fun"]> --> "Zilf"

<MAPF ,VECTOR
<FUNCTION (N) <* .N .N>> (1 2 3)> --> [1 4 9]

<DEFINE SETG-MANY ("TUPLE" TUP)
<MAPF <>
,SETG
.TUP
<REST .TUP </ <LENGTH .TUP> 2>>>>

<SETG-MANY VAR-1 VAR-2 VAR-3 100 55 616>
,VAR-1 --> 100
,VAR-2 --> 55
,VAR-3 --> 616

<DEFINE LNUM (N)
<MAPF ,LIST

<FUNCTION ()
<COND (<=? 0 <SET N <- .N 1>>> <MAPSTOP .N>)

(ELSE .N)>>>>
<LNUM 5> --> (4 3 2 1 0)

 MAPLEAVE
<MAPLEAVE [value]>

MDL built-in

MAPLEAVE leaves the MAPF or the MAPR immediately and makes the MAPF or the MAPR return the
value (TRUE by default). This means that an eventual finalf in the MAPF or the MAPR never
will be invoked.

Example:

;"Return first non-zero value in STRUC"
<DEFINE FIRST-N0 (STRUC)

<MAPF <> <FUNCTION (X)
<COND (<N==? .X 0> <MAPLEAVE .X>)>> .STRUC>>

<FIRST-N0 [0 0 0 "ZIL" 6 0]> --> "ZIL"

 MAPR
<MAPR finalf applicable structs ...>

MDL built-in

- 72 -

MAPR ("map rest") works the same as MAPF but instead of sending one element at a time to
applicable it sends the REST of the structs, starting with <REST struct 0>. In other words,
the first iteration takes REST 0 from each of the structs and calls applicable, the second
iteration takes REST 1 from each of the structs and calls applicable, and so on until one of
the structs doesn't have any more elements. The intermediate results from each call to
applicable is stored in a TUPLE.

The finalf can either be a FUNCTION or <> (FALSE). If it is FALSE the TUPLE with the
intermediate result is thrown away, otherwise finalf is called with the TUPLE.

MAPR returns the result from finalf. If finalf is FALSE, MAPR returns the result from the last
call to applicable. If applicable never was called (one of the structs was empty) MAPR
returns FALSE.

One special case is if only finalf and applicable are given. In this case applicable is
called indefinitely with no arguments until a MAPLEAVE or MAPSTOP is invoked. finalf is
called if MAPSTOP is used to leave the iteration.

Example:

<SET FOO [1 2 3]>
;"Triple value of struct"
<MAPR <> <FUNCTION (L) <1 .L <* <1 .L> 3>>> .FOO>
.FOO --> [3 6 9]

 MAPRET
<MAPRET [value] ...>

MDL built-in

MAPRET leaves the current iteration of the MAPF or the MAPR and adds the specified values to the
TUPLE of arguments used when the finalf is called. If no values are specified nothing is added
to the TUPLE in this iteration. Note that the MAPF or the MAPR continues to run through the
iterations until one of the structs is out of elements.

Example:

<SET FOO (65 66 67 68)>
<MAPF ,LIST

#FUNCTION ((L)
<MAPRET <ASCII .L>>) .FOO> --> (!\A !\B !\C !\D)

 MAPSTOP
<MAPSTOP [value] ...>

MDL built-in

MAPSTOP is similar to MAPRET but after it adds the values to the TUPLE of arguments it directly
calls finalf and aborts all remaining iterations.

Example:

<DEFINE FIRST-THREE (STRUC "AUX" (I 3))

- 73 -

<MAPF ,LIST
<FUNCTION (E)

<COND (<0? <SET I <- .I 1>>> <MAPSTOP .E>)>
.E> .STRUC>>

<FIRST-THREE "ABCDEFG"> --> (!\A !\B !\C)

 MAX
<MAX numbers ...>

MDL built-in

MAX returns the maximum number among numbers.

Example:

<MAX 2 3 4 1> --> 4

 MEMBER
<MEMBER item structure>

MDL built-in

MEMBER iterates through structure and returns <REST structure i>, where i is the
index of the first element in structure that is =? with item.

MEMBER returns false if the item is not found.

Examples:

<MEMBER "BC" "ABCD"> --> "BCD"
<MEMBER 2 (1 2 3 4)> --> (2 3 4)
<MEMBER 0 (1 2 3 4)> --> #FALSE <>

 MEMQ
<MEMQ item structure>

MDL built-in

MEMQ ("member quick") iterates through structure and returns <REST structure i>,
where i is the index of the first element in structure that is ==? with item.

MEMQ returns false if the item is not found.

Examples:

<MEMQ "BC" "ABCD"> --> #FALSE <>
<MEMQ 2 (1 2 3 4)> --> (2 3 4)
<MEMQ 0 (1 2 3 4)> --> #FALSE <>

 MIN
<MIN numbers ...>

- 74 -

MDL built-in

MIN returns the minimum number among numbers.

Example:

<MIN 2 3 4 1> --> 1

 MOBLIST
<MOBLIST name>

MDL built-in

MOBLIST ("make oblist") creates and returns a new empty OBLIST named name. If an OBLIST
with the name already exists the existing one is returned instead.

Example:

<INSERT "FOO" <MOBLIST NEW-OBLIST>> --> FOO!-NEW-OBLIST

FOO!-NEW-OBLIST ;"This can also be done with trailer"

 MOD
<MOD number1 number2>

MDL built-in

MOD divides number1 with number2, which must be non-zero, and returns the remainder.

Examples:

<MOD 3 2> --> 1
<MOD 3256 256> --> 184

 MSETG
<MSETG atom value>

ZIL library

MSETG ("manifest set global") is an alias for CONSTANT.

MSETG (CONSTANT) defines an atom with value that will never be changed. The atom can is
accessed inside a ROUTINE with GVAL (or ,) just like a GLOBAL atom. Defining a MSETG
(CONSTANT) instead of a GLOBAL when possible can be vital information the compiler can use for
optimization.

Example:

<MSETG MSG-CANT-DO-THAT "You can't do that!">
...
<TELL ,MSG-CANT-DO-THAT CR>

- 75 -

 N==?
<N==? value1 value2>

MDL built-in

Predicate. False if value1 and value2 are the same object, otherwise true. N==? is the opposite
to ==?.

ZILF defines "the same object" more loosely than MDL, see ==?.

Examples:

<SET X 1>
<N==? .X 1> --> False

<SET X (1 2 3)>
<N==? .X (1 2 3)> --> True

 N=?
<N=? value1 value2>

MDL built-in

Predicate. False if value1 and value2 is of the same TYPE and structurally equal, otherwise
true. N=? is the opposite to =?.

Examples:

<SET X 1>
<N=? .X 1> --> True

<SET X (1 2 3)>
<N=? .X (1 2 3)> --> True

 NEVER-ZAP-TO-SOURCE-DIRECTORY?
 <NEVER-ZAP-TO-SOURCE-DIRECTORY?>

ZIL library

ZILF ignores this and always returns FALSE.

 NEW-ADD-WORD
<NEW-ADD-WORD atom-or-string [type] [value] [flags]>

ZIL parser library

NEW-ADD-WORD is an alias to ADD-WORD.

 NEWTYPE
<NEWTYPE name primtype-atom [decl]>

- 76 -

MDL built-in

NEWTYPE creates a new TYPE with the name, name and the same PRIMTYPE as
primtype-atom. It returns the new TYPE. The name must be unique (<VALID-TYPE?
name> is FALSE> otherwise NEWTYPE results in an error.

It is possible to specify a decl (see GDECL) for the new TYPE that is enforced when CHTYPE.

See APPLYTYPE, EVALTYPE and PRINTTYPE.

Examples:

<NEWTYPE GARGLE CHARACTER>
<TYPEPRIM GARGLE> --> FIX
<SET A <CHTYPE 65 GARGLE>>
<TYPE .A> --> GARGLE
<PRIMTYPE .A> --> FIX

<NEWTYPE FIRSTNAME ATOM>
<NEWTYPE LASTNAME FIRSTNAME>
<=? ALFONSO #FIRSTNAME ALFONSO> --> #FALSE
<=? #FIRSTNAME MADISON #LASTNAME MADISON> --> #FALSE
<=? #LASTNAME MADISON #LASTNAME MADISON> --> T

<NEWTYPE 2FIXLIST LIST '!<LIST FIX FIX>>
#2FIXLIST (1 2) --> Ok
#2FIXLIST (1 2 3) --> Error

 NEXT
<NEXT asoc>

MDL built-in

NEXT returns the next asoc entry, of TYPE ASOC, in the ASSOCIATION chain. If there are no
more entries then FALSE is returned.

See ASSOCIATIONS, AVALUE, GETPROP, INDICATOR, ITEM and PUTPROP.

Example:

<DEFINE FIND-ASOC (ITEM)
<REPEAT ((A <ASSOCIATIONS>))

<COND (<=? .A <>> <RETURN <>>)>
<COND (<==? .ITEM <ITEM .A>> <RETURN .A>)>

<SET A <NEXT .A>>>>

<PUTPROP NEW-ASOC TEXT "Hello, world!">
<FIND-ASOC NEW-ASOC>

--> #ASOC (NEW-ASOC TEXT "Hello, world!")

 NOT
<NOT value>

- 77 -

MDL built-in

Boolean (logical) "not". NOT returns true if value is false (#FALSE <>), otherwise NOT returns
false.

Examples:

<NOT <>> --> T
<NOT T> --> #FALSE <>
<NOT <=? 1 2>> --> T (Same as <N=? 1 2>

 NTH
<NTH structure index>
<index structure> ;"Alternative syntax"

MDL built-in

Returns the element at index in structure. Valid values for index are between 1 and
<LENGTH structure>.

structure must be an object that STRUCTURED? evaluates to TRUE.

NTH can also be abbreviated as <index structure>.

Note that TABLE is not a structure.

Also see BACK, LENGTH, PUT, REST, SUBSTRUC and TOP.

Example:

<NTH <VECTOR "AB" "CD" "EF"> 2> --> "CD"
<2 <VECTOR "AB" "CD" "EF">> --> “CD”

 OBJECT
<OBJECT name (property values ...) ...>

ZIL library

OBJECT creates an object with the internal objectname, name. After the name follows LISTs of
properties for the OBJECT and the values for each property. Which properties that define up a
OBJECT is determined by the parser and it’s possible to add new properties with PROPDEF as long
as the parser is modified to support the new property. Below is a list of common properties.

IN or LOC This is the OBJECTs initial location. This could, for example, be a ROOM,
another OBJECT (container) or the player (in its inventory). There are a
couple of special locations like GLOBAL-OBJECTS for OBJECTs that the
player can refer to everywhere, LOCAL-GLOBALS for OBJECTs the player
can refer to in ROOMs that define this OBJECT in its GLOBAL list and
GENERIC-OBJECTS for OBJECTs that are concepts more than objects (for
example the murder or the new will in Deadline).

SYNONYMS This lists all the nouns that can be used to refer to the OBJECT.
ADJECTIVE This lists all the adjectives that can be used to refer to the OBJECT.

- 78 -

DESC The short description text of the OBJECT. This is the text that is, for
example, printed in the players inventory.

FLAGS This lists all the flagbits that are set on this OBJECT.
FDESC (“first description”), this is the text that is used to describe the OBJECT until

it is touched (picked up).
LDESC (“long description”), this is the text that is used to describe the OBJECT,

when it is on the ground, after it is touched.
GLOBAL Optional property. This is a LIST of all the OBJECTs that is IN the

LOCAL-GLOBALS that are accessible from this ROOM. This could, for
example, be a door that is accessible from two different ROOMs.

THINGS Optional property. This creates one or more simple “pseudo-objects”.
Each object has three parts: a LIST of adjectives (FALSE if none), a LIST
of nouns and the name of the action-routine to call when this object is
accessed. In early Infocom games this property was called PSEUDO and had
a slightly different syntax.

ACTION Defined as (ACTION routine-name). This is the OBJECTs
action-routine. For OBJECTs action-routines there is no argument.

SIZE Size of OBJECT (for inventory handling).
VALUE Value of OBJECT (for scoring purpose).
DESCFCN This is used to define a function to handle the OBJECTs description. It is

called with an argument, ARG, that can be M-OBJDESC? or M-OBJDESC. If
the routine returns FALSE during the M-OBJDESC? call, the OBJECT
defaults to standard descriptions with FDESC and LDESC, otherwise the
description is handled during the M-OBJDESC call.

CAPACITY Capacity of the OBJECT if it is a container.
CONTFCN This routine is called on the container when OBJECTs inside the container

are handled (used rarely).

See Learning ZIL, Steve E. Meretzky and ZIL Course, Marc S. Blank for more on properties, flagbits
and how to write and design games.

Examples:

<OBJECT LAMP
(IN LIVING-ROOM)
(SYNONYM LAMP LANTERN LIGHT)
(ADJECTIVE BRASS)
(DESC "brass lantern")
(FLAGS TAKEBIT LIGHTBIT)
(ACTION LANTERN)
(FDESC "A battery-powered brass lantern is

on the trophy case.")
(LDESC "There is a brass lantern

(battery-powered) here.")
(SIZE 15)>

 OBLIST?
<OBLIST? atom>

MDL built-in

- 79 -

OBLIST? returns the OBLIST that contains the atom. If the atom is not in any OBLIST it returns
FALSE.

Examples:

<==? <OBLIST? STRING> <ROOT>> --> T

<OBLIST? <ATOM "SPANK-NEW-ATOM">> --> #FALSE

<==? <OBLIST? FOO!-MY-OBLST> <MOBLIST MY-OBLST>> --> T

 OFFSET
<OFFSET index structure-decl [value-decl]>

MDL built-in

OFFSET creates an OFFSET TYPE that is used with NTH and PUT to check that an element at
index in the structure follows the specified pattern, structure-decl and
value-decl.

The index is an integer and the structure-decl follow the normal rules for a decl (see
GDECL). Because the OFFSET only specifies the decl for one element in the structure it is
possible to split the decl in two parts where structure-decl specifies the structure and
value-decl is the decl for this specific element.

Note that in ZILF can OFFSET only be used with NTH and PUT in the form
<index-or-offset structure> and <index-or-offset structure value>
respectively.

GET-DECL and PUT-DECL can be used to examine and change the decl of the OFFSET and
INDEX returns the index of an OFFSET.

Example:

<SETG OFF1 <OFFSET 1 '<VECTOR FIX>>>
<SETG OFF2 <OFFSET 2 '<VECTOR FIX CHARACTER>>>
<SETG OFF3 <OFFSET 3 '<VECTOR> 'STRING>>
<GET-DECL ,OFF2> --> <VECTOR FIX CHARACTER>
<SET V [1 !\A "BCD"]>
<OFF1 .V> --> 1
<OFF3 .V> --> "BCD"
<OFF2 .V !\B> --> [1 !\B "BCD"]
<OFF1 .V !\A> --> ERROR
<2 .V 65>
<OFF2 .V> --> ERROR

 OPEN
<OPEN "READ" path>

MDL built-in

OPEN the file at path for input. The second argument must always be "READ" in ZILF and the

- 80 -

path is specified like in Linux (forward slashes etc.) and uppercase/lowercase can be significant,
depending on the host system.

Example:

;"ZILF ver 0.9"
<SET CH <OPEN "READ" "../zillib/parser.zil">>
<SET BUFFER <ISTRING 1000>>
<READSTRING .BUFFER .CH ";"> --> 124 ;"READ until first ;"
<CLOSE .CH>

 OR
<OR expressions...>

MDL built-in

Boolean OR. Requires that one of the expressions evaluates to true to return true. Exits on the
first expression that evaluates to true (rest of expressions are not evaluated).

Because false is its own TYPE outside a routine OR returns #FALSE if all expressions are false
or the value of the first true expression.

Example:

<OR <=? 1 2> <=? 1 1>> --> True
<OR <=? 1 1> <SET X 2>> --> X never set to 2 because

first predicate evaluates
to true

<SET X <OR 0 1 2 3>> --> X is set to 0
<SET X <OR <> 1 2 3>> --> X is set to 1

 OR?
<OR? Expressions ...>

MDL built-in

Returns the same result as OR with the difference that all exressions are evaluated.

Examples:

<OR? <=? 1 2> <=? 1 1>> --> True
<OR? <=? 1 1> <SET X 2>> --> X is set to 2 because

all expressions are
evaluated

 ORB
<ORB numbers ...>

MDL built-in

Bitwise OR.

- 81 -

Examples:

<ORB 33 96> --> 97
<ORB 33 96 64> --> 97

 ORDER-FLAGS?
<ORDER-FLAGS? LAST objects ...>

ZIL library

Each of the objects is an atom naming a flag, as seen in the (FLAGS ...) clause of an
OBJECTdefinition.

The only ordering allowed is LAST, which causes the named flags to be added to the list of “flags
requiring high numbers”, which are assigned the highest flag numbers so they may be distinguished
from zero. Flags mentioned in the (FIND ...) clause of SYNTAX definitions are already added
to this list by default.

 ORDER-OBJECTS?
<ORDER-OBJECTS? atom>

ZIL library

This controls the order in which object numbers are assigned to objects.

Note that there are two ways the compiler can learn about an object: some objects are explicitly
“defined” using ROOM or OBJECT, whereas the existence of others is merely implied when the
objects are “mentioned” as part of another object’s definition (in a LOC or direction property).

By default, if ORDER-OBJECTS? is not used, object numbers are assigned in reverse mention
order. That is, the first object defined is given the highest number, and any other objects mentioned
in its definition are given the next highest numbers (in order), whether or not those objects are
explicitly defined later.

The atom is one of the following:

DEFINED To assign numbers to all explicitly defined objects in the order
of their definitions (starting at 1), then to all other mentioned
objects in the order of their mentions.

ROOMS-FIRST The same as DEFINED except that numbers are assigned to
rooms before non-rooms, so room numbers can be packed into
a byte array (assuming there are less than 256 of them).

ROOMS-LAST The same as DEFINED except that numbers are assigned to
non-rooms before rooms.

ROOMS-AND-LGS-FIRST The same as ROOMS-FIRST except that numbers are
assigned to rooms and local globals before the remaining
objects.

For the purpose of object ordering, “rooms” include all objects defined with ROOM (instead of
OBJECT) as well as all objects whose initial LOC is an object named ROOMS. “Local globals”
includes all objects whose initial LOC is an object named LOCAL-GLOBALS.

- 82 -

 ORDER-TREE?
<ORDER-TREE? atom>

ZIL library

This controls the initial layout of the Z-machine object tree.

The object tree is defined by three fields on each object, named in the Z-Machine Standards
Document as “parent”, “child”, and “sibling”, which are read by the ZIL functions LOC, FIRST?,
and NEXT?. Each object’s parent field is specified by the (LOC …) clause in the object definition,
but the compiler has discretion to set the child and sibling fields as long as the tree remains
well-formed.

The atom must be:

● REVERSE-DEFINED, to force objects to be linked in the reverse order of their definitions.
That is, the child of an object X is the last object in the source code whose definition
contains (LOC X); the sibling of that child is the next to last object in the source code that
contains (LOC X); and so on.

By default, if ORDER-TREE? is not used, the order is the same as REVERSE-DEFINED except for
the first defined child, which remains the first object linked. That is, the child of an object X is the
first object in the source code whose definition contains (LOC X); the sibling of that child is the
last object that contains (LOC X); the sibling of that child in turn is the next to last object that
contains (LOC X); and so on.

 PACKAGE
<PACKAGE package-name>

MDL package system

PACKAGE defines a group of ATOMs (i.e. variables and functions) with the package-name for
potential later inclusion (via USE or USE-WHEN) in the project. A PACKAGE is often used to
functionally group together library functions that can have a usage over many projects.

Internally an OBLIST named PACKAGE is used in conjunction with BLOCK and ENDBLOCK.
When you define a PACKAGE the following is happening:

1. An external OBLIST, package-name, is created and added to the OBLIST PACKAGE
(e.g. FOO!-PACKAGE).

2. An internal OBLIST, Ipackage-name, is created and added to the OBLIST
package-name (e.g. IFOO!-FOO!-PACKAGE).

3. A BLOCK is started with the OBLISTs (in this order) Ipackage-name, package-name
and <ROOT> (e.g. IFOO, FOO, <ROOT>).

This means that every ATOM that is created inside the PACKAGE ends up on the internal OBLIST
first. If ENTRY is used the ATOM is created/moved to the external OBLIST and finally RENTRY
creates/moves the ATOM to the ROOT OBLIST.

The PACKAGE definition is ended by END-PACKAGE (in fact an ENDBLOCK) which restores the
OBLISTs to the state they had before the PACKAGE definition began.

- 83 -

When you decide to use a package by USE or USE-WHEN the OBLIST package-name is copied
and added last to the local OBLIST (<LVAL OBLIST>). This means that all ATOMs on the
external package OBLIST becomes available in current environment.

Note that a PACKAGE can be defined additive (i.e. multiple PACKAGE definitions with the same
package-name is added together to one PACKAGE).

ZILF has three packages predefined in <MOBLIST PACKAGE>; NEWSTRUC, ZIL and ZILCH.
They are all empty and are only there for compatibility (all ATOMs in these packages are already in
ZILF).

See DEFINITIONS, ENDPACKAGE, ENTRY, RENTRY, USE and USE-WHEN.

Examples:

;"Define PACKAGE"
<REMOVE ANSWER> ;"Secure that ATOM not on any OBLIST"
<REMOVE DBL-ANSWER>
<REMOVE ROOT-ANSWER>
<REMOVE SECRET>
<PACKAGE "FOO">
<ENTRY ANSWER>
<SETG ANSWER 42>
<SETG SECRET 12345>
<RENTRY ROOT-ANSWER>
<SETG ROOT-ANSWER 21>
<ENDPACKAGE>

<TYPE? <GETPROP FOO!-PACKAGE OBLIST> OBLIST> --> OBLIST
<TYPE? <GETPROP IFOO!-FOO!-PACKAGE OBLIST> OBLIST>--> OBLIST
<GASSIGNED? ANSWER> --> #FALSE
<GASSIGNED? ANSWER!-FOO!-PACKAGE> --> T
<GASSIGNED? SECRET!-IFOO!-FOO!-PACKAGE> --> T
,ANSWER!-FOO!-PACKAGE --> 42
,SECRET!-IFOO!-FOO!-PACKAGE --> 12345
,ROOT-ANSWER --> 21

;"PACKAGEs can be defined additive"
<PACKAGE "FOO">
<SETG DBL-ANSWER <* ,ANSWER 2>>
<ENTRY DBL-ANSWER>
<ENDPACKAGE>

,ANSWER!-FOO!-PACKAGE --> 42
,DBL-ANSWER!-FOO!-PACKAGE --> 84

;"USE adds external OBLIST to local OBLIST-path"
<REMOVE ANSWER> ;"Secure that ATOM not on any OBLIST"
<LENGTH .OBLIST> --> 2
<USE "FOO">
<LENGTH .OBLIST> --> 3
,ANSWER --> 42
<GASSIGNED? SECRET> --> #FALSE

- 84 -

,SECRET!-IFOO --> 12345

 PARSE
<PARSE text [10] [lookup-oblist]>

MDL built-in

PARSE takes a string, text, and returns the first MDL object encountered in it. If
lookup-oblist is supplied, PARSE looks for potential ATOMs on this OBLIST. If no
lookup-oblist is supplied, .OBLIST is used.

ZILF requires that the second argument is 10 if a lookup-oblist is supplied.

Examples:

<PARSE "FOO"> --> FOO

<PARSE "+"> --> +
<PARSE "+" 10 <GETPROP PACKAGE OBLIST>> --> +!-PACKAGE

<PARSE "23"> --> 23

<PARSE "(1 2 3)"> --> (1 2 3)

<PARSE "<+ 12 34>"> --> <+ 12 34>
<PARSE "%<+ 12 34>"> --> 46

<PARSE "<+ .A .B>" 10 <MOBLIST OB>>
--> <+!-OB <LVAL!-OB A!-OB> <LVAL!-OB B!-OB>>

<PARSE " "> --> ERROR (No expression)

<PARSE "1 2 3"> --> 1 (Only 1st expression)

PICFILE
 <PICFILE>

 ZIL library

ZILF ignores this and always returns FALSE.

 PLTABLE
<PLTABLE [flags ...] values ...>

ZIL library

Defines a table containing the specified values and with the PURE and LENGTH flag (see TABLE
about LENGTH, PURE and other flags).

TABLE is a ZIL-specific structure that can be used both outside and inside ROUTINES.

 PNAME
<PNAME atom>

- 85 -

MDL built-in

PNAME ("printed name") returns a newly created string copy of the atom’s pname. PNAME never
prints an ATOMs trailers, unlike UNPARSE, and is therefore quicker.

Examples:

<PNAME FOO> --> "FOO"

<PNAME FOO!-NEW-OBLIST> --> "FOO"
<UNPARSE FOO!-NEW-OBLIST> --> "FOO!-NEW-OBLIST"

 PREP-SYNONYM
<PREP-SYNONYM original synonyms ...>

ZIL parser library

PREP-SYNONYM creates one or more synonyms to the original preposition.

ZILF treats PREP-SYNONYM as an alias to SYNONYM.

 PRIMTYPE
<PRIMTYPE value>

MDL built-in

evaluates to the primitive type of value. The primitive types are ATOM, FIX, LIST, STRING,
TABLE and VECTOR.

Examples:

<PRIMTYPE !\A> --> FIX
<PRIMTYPE <+1 2>> --> FIX
<PRIMTYPE "ABC"> --> STRING

 PRIN1
<PRIN1 value [channel]>

MDL built-in

Prints the evaluated representation of value to channel (default for channel is <LVAL
OUTCHAN> - the console). PRIN1 also returns the evaluated representation of value.

Examples:
<PRIN1 !\A> --> !\A
<PRIN1 42> --> 42
<PRIN1 "Hello, world!"> --> "Hello, world!"
<PRIN1 (1 2 3)> --> (1 2 3)
<PRIN1 <+ 1 2>> --> 3

- 86 -

 PRINC
<PRINC value [channel]>

MDL built-in

PRINC is just like PRIN1, except for STRING and CHARACTER where surrounding dubbel quote
(") and initial !\ is suppressed. PRINC returns the evaluated representation of value.

Examples:
<PRINC !\A> --> A
<PRINC 42> --> 42
<PRINC "Hello, world!"> --> Hello, world!
<PRINC (1 2 3)> --> (1 2 3)
<PRINC <+ 1 2>> --> 3

 PRINT
<PRINT value [channel]>

MDL built-in

PRINT is just like PRIN1, except that it first prints a CRLF, then the evaluated representation of
value and lastly a space. PRINT returns the evaluated representation of value.

Examples:
<PRINT !\A> --> \n!\A<space>
<PRINT 42> --> \n42<space>
<PRINT "Hello, world!"> --> \n"Hello, world!"<space>
<PRINT (1 2 3)> --> \n(1 2 3)<space>
<PRINT <+ 1 2>> --> \n3<space>

 PRINT-MANY
<PRINT-MANY channel printer items ...>

ZIL library

PRINT-MANY prints multiple items to channel with the printer. The printer is usually
PRINT, PRINC or PRIN1 but could actually be any FUNCTION that takes one argument. The
printer is called repeatedly with one item at a time until the list of items is exhausted.

If PRMANY-CRLF is given as an item, a CRLF is printed at that position.

Examples:

<PRINT-MANY .OUTCHAN PRINC "Hello" !\! PRMANY-CRLF>
--> Hello!\n

<PRINT-MANY .OUTCHAN PRIN1 "string" !\c PRMANY-CRLF>
--> "string"!\c\n

- 87 -

 PRINTTYPE
<PRINTTYPE atom [handler]>

MDL built-in

PRINTTYPE tells the TYPE atom how it should be printed (PRIN1-style). If PRINTTYPE is
called without a handler then the currently active handler is returned. If there is no active
handler, FALSE is returned.

Note that it is possible to replace the handler with a new handler, even on the predefined
TYPEs.

See APPLYTYPE, EVALTYPE and NEWTYPE.

Examples:

<DEFINE ROMAN-PRINT (ROMAN "AUX" (RNUM <CHTYPE .ROMAN FIX>))
<COND (<OR <L=? .RNUM 0> <G? .RNUM 3999>>

<PRINC <CHTYPE .NUMB TIME>>)
(T
<RCPRINT </ .RNUM 1000> '![!\M]>
<RCPRINT </ .RNUM 100> '![!\C !\D !\M]>
<RCPRINT </ .RNUM 10> '![!\X !\L !\C]>
<RCPRINT .RNUM '![!\I !\V !\X]>)>>

<DEFINE RCPRINT (MODN V)
<SET MODN <MOD .MODN 10>>
<COND (<==? 0 .MODN>)

(<==? 1 .MODN> <PRINC <1 .V>>)
(<==? 2 .MODN> <PRINC <1 .V>> <PRINC <1 .V>>)
(<==? 3 .MODN> <PRINC <1 .V>> <PRINC <1 .V>>

<PRINC <1 .V>>)
(<==? 4 .MODN> <PRINC <1 .V>> <PRINC <2 .V>>)
(<==? 5 .MODN> <PRINC <2 .V>>)
(<==? 6 .MODN> <PRINC <2 .V>> <PRINC <1 .V>>)
(<==? 7 .MODN> <PRINC <2 .V>> <PRINC <1 .V>>

<PRINC <1 .V>>)
(<==? 8 .MODN> <PRINC <2 .V>> <PRINC <1 .V>>

<PRINC <1 .V>> <PRINC <1 .V>>)
(<==? 9 .MODN> <PRINC <1 .V>> <PRINC <3 .V>>)>>

<NEWTYPE ROMAN FIX>
<PRINTTYPE ROMAN ,ROMAN-PRINT>
<==? <PRINTTYPE ROMAN> ,ROMAN-PRINT>
#ROMAN 1984 --> MCMLXXXIV

<NEWTYPE ROMAN2 FIX>
<PRINTTYPE ROMAN2 ROMAN> ;"Copies active handler, if exists"
#ROMAN2 2020 --> MMXX

<PRINTTYPE ROMAN FIX>
<=? <PRINTTYPE ROMAN> <>> --> T

- 88 -

#ROMAN 2020 --> 2020
;"Change in ROMAN doesn’t affect ROMAN2"
#ROMAN2 2020 --> MMXX

<PRINTTYPE FIX ,ROMAN-PRINT> ;"Works on built-in too!"
23 --> XXIII

<PRINTTYPE FORM <FUNCTION (F) <PRIN1 <CHTYPE .F LIST>>>>
<FORM + 1 2> --> (+ I II)

 PROG
<PROG [activation] (bindings ...) [decl] expressions ...>

MDL built-in

PROG defines a program block with its own set of bindings. PROG is similar to BIND and
REPEAT but unlike BIND it creates a default activation (like REPEAT) at the start of the block
and doesn't have an automatic AGAIN at the end of the block (like REPEAT). It is possible to name
an atom to the activation but it is not necessary. AGAIN and RETURN inside a PROG-block
will start the block over or return from the block.

The decl is used to specify the valid TYPE of the variables. In its simplest form decl is
formatted like: #DECL ((X) FIX), meaning that X must be of the TYPE FIX. For more
information on how to format the decl see GDECL.

Also see AGAIN, BIND, REPEAT and RETURN for more details how to control program flow.

Example:

<PROG ((X 1)) #DECL ((X) FIX)
<PROG ((X 2)) <PRIN1 .X>> <PRIN1 .X>>

--> "21"

<DEFINE TEST-PROG-AS-REPEAT ()
<PRINC "START ">
<PROG ((X 0))

<SET X <+ .X 1>>
<PRIN1 .X>
<COND (<=? .X 3> <RETURN>)> ;"--> exit block"
<AGAIN> ;"--> repeat"

>
<PRINC " END">

>
<TEST-PROG-AS-REPEAT> --> "START 123 END"

 PROPDEF
<PROPDEF atom default-value [spec-patterns ...]>

ZIL library

PROPDEF defines a property, atom, with a default-value for OBJECTs (and ROOMs). The
default-value is the value that GETP will return if the property is not defined for the given

- 89 -

OBJECT.

For the more complex properties it is possible to define a spec-pattern according to:

(atom|DIR ["MANY"|"OPT"] [phrase] var:type ... =
[form-len] ["MANY"] <fnc-size var>|(const value)|
(ptr <fnc-size var>) ...) ...

The spec-pattern consists of two parts divided by an equal sign. The left side is the pattern and
the right side is the rules on how to store the property.

atom|DIR This is the property. DIR is a special case that is used for
DIRECTIONS.

"MANY" This means that the pattern of var:type repeats itself. If "MANY"
is defined on the left side of the equal sign there must be a matching
on the right side.

"OPT" This means that the pattern after is optional.
[phrase] This can be tokens like IF, ELSE, TO.
var:type This is a variable name, var, and its type. Usually FIX, STRING

or ROOM.
form-len The length (records) of the form. The form-len is optional and can

also be given as <>.
<fnc-size var> The fnc-size can be a call with var to either BYTE, WORD,

STRING, OBJECT, ROOM, GLOBAL, NOUN, ADJ, or VOC. This stores
var or derivative of var and adds to the vocabulary and/or creates a
GVAL.

(ptr <fnc-size This creates a GVAL, ptr, that contains the address-pointer relative
var>) to the property.

(const value) This creates a CONSTANT, name, containing value.

Examples:

;"Ordinary property"
<PROPDEF HEIGHT 72>
<OBJECT OBJ1>
<OBJECT OBJ2 (HEIGHT 80)>
;"Implies, inside routine"
<GETP ,OBJ1 ,P?HEIGHT> --> 72
<GETP ,OBJ2 ,P?HEIGHT> --> 80

;"Basic pattern"
<PROPDEF HEIGHT <>

(HEIGHT FEET:FIX FOOT INCHES:FIX = 2 <WORD .FEET>
<BYTE .INCHES>)

(HEIGHT FEET:FIX FT INCHES:FIX = 2 <WORD .FEET>
<BYTE .INCHES>)>

<OBJECT GIANT (HEIGHT 10 FT 8)>
;"Implies, inside routine"
<=? <GET <GETPT ,GIANT ,P?HEIGHT> 0> 10>
<=? <GETB <GETPT ,GIANT ,P?HEIGHT> 2> 8>

;"Basic pattern with OPT"
<PROPDEF HEIGHT <> (HEIGHT FEET:FIX FT "OPT" INCHES:FIX =

- 90 -

<WORD .FEET> <BYTE .INCHES>)>
<OBJECT GIANT1 (HEIGHT 100 FT)>
<OBJECT GIANT2 (HEIGHT 50 FT 11)>
;"Implies, inside routine"
<=? <PTSIZE <GETPT ,GIANT1 ,P?HEIGHT>> 3>
<=? <GET <GETPT ,GIANT1 ,P?HEIGHT> 0> 100>
<=? <GETB <GETPT ,GIANT1 ,P?HEIGHT> 2> 0>
<=? <PTSIZE <GETPT ,GIANT2 ,P?HEIGHT>> 3>
<=? <GET <GETPT ,GIANT2 ,P?HEIGHT> 0> 50>
<=? <GETB <GETPT ,GIANT2 ,P?HEIGHT> 2> 11>

;"Basic pattern with MANY"
<PROPDEF TRANSLATE <> (TRANSLATE "MANY" A:ATOM N:FIX =

"MANY" <VOC .A BUZZ> <WORD .N>)>
<OBJECT NUMBERS (TRANSLATE ONE 1 TWO 2)>
;"Implies, inside routine"
<=? <PTSIZE <GETPT ,NUMBERS ,P?TRANSLATE>> 8>
<=? <GET <GETPT ,NUMBERS ,P?TRANSLATE> 0> ,W?ONE>
<=? <GET <GETPT ,NUMBERS ,P?TRANSLATE> 1> 1>
<=? <GET <GETPT ,NUMBERS ,P?TRANSLATE> 2> ,W?TWO>
<=? <GET <GETPT ,NUMBERS ,P?TRANSLATE> 3> 2>

;"Pattern with constants"
<PROPDEF HEIGHT <> (HEIGHT FEET:FIX FT INCHES:FIX =

(HEIGHTSIZE 3) (H-FEET <WORD .FEET>)
(H-INCHES <BYTE .INCHES>))>

<=? ,HEIGHTSIZE 3>
<=? ,H-FEET 0>
<=? ,H-INCHES 2>

;"DIR sets pattern for all DIRECTIONS"
<PROPDEF DIRECTIONS <> (DIR GOES TO R:ROOM =

(MY-UEXIT 3) <WORD 0> (MY-REXIT <ROOM .R>))>
<DIRECTIONS NORTH SOUTH>
<OBJECT HOUSE (SOUTH GOES TO WOODS)>
<OBJECT WOODS (NORTH GOES TO HOUSE)>
;"Implies, inside routine"
<=? <PTSIZE <GETPT ,HOUSE ,P?SOUTH>> ,MY-UEXIT>
<=? <GETB <GETPT ,HOUSE ,P?SOUTH> ,MY-REXIT> ,WOODS>

;"DIR sets implicit DIRECTIONS"
<PROPDEF DIRECTIONS <> (DIR GOES TO R:ROOM =

(MY-UEXIT 3) <WORD 0> (MY-REXIT <ROOM .R>))>
<DIRECTIONS NORTH SOUTH>
<OBJECT HOUSE (EAST GOES TO WOODS)>
<OBJECT WOODS (WEST GOES TO HOUSE)>
;"Implies, inside routine"
<=? <PTSIZE <GETPT ,HOUSE ,P?EAST>> ,MY-UEXIT>
<=? <GETB <GETPT ,HOUSE ,P?EAST> ,MY-REXIT> ,WOODS>
<BAND <GETB ,W?EAST 4> ,PS?DIRECTION>

;"VOC in pattern adds word to vocabulary"

- 91 -

<PROPDEF FOO <> (FOO A:ATOM = <VOC .A PREP>)>
<OBJECT BAR (FOO FOO)>
;"Implies, inside routine"
<=? <GETP ,BAR ,P?FOO> ,W?FOO>

;"Complex PROPDEF (DIRECTIONS from Zork Zero)"
<PROPDEF DIRECTIONS <>

(DIR TO R:ROOM = (UEXIT 1) (REXIT <ROOM .R>))
(DIR S:STRING = (NEXIT 2) (NEXITSTR <STRING .S>))
(DIR SORRY S:STRING = (NEXIT 2) (NEXITSTR <STRING .S>))
(DIR PER F:FCN = (FEXIT 3)

(FEXITFCN <WORD .F>) <BYTE 0>)
(DIR TO R:ROOM IF F:GLOBAL "OPT" ELSE S:STRING =

(CEXIT 4) (REXIT <ROOM .R>) (CEXITFLAG <GLOBAL .F>)
(CEXITSTR <STRING .S>))

(DIR TO R:ROOM IF O:OBJECT IS OPEN "OPT" ELSE S:STRING =
(DEXIT 5) (DEXITOBJ <OBJECT .O>)
(DEXITSTR <STRING .S>) (DEXITRM <ROOM .R>))>

 PTABLE
<PTABLE [(flags ...)] values ...>

ZIL library

Defines a table containing the specified values and with the PURE flag (see TABLE about PURE
and other flags).

TABLE is a ZIL-specific structure that can be used both outside and inside ROUTINES.

 PUT
<PUT structure index new-value>

MDL built-in

Sets the element at index in structure to new-value. Valid values for index are between 1
and <LENGTH structure>.

structure must be an object that STRUCTURED? evaluates to true.

Note that TABLE is not a structure.

Also see BACK, LENGTH, NTH, REST, SUBSTRUC and TOP.

Example:

<SETG STRUCT (1 2 3 4)>
<PUT ,STRUCT 2 5> --> STRUCT = (1 5 3 4)

 PUT-DECL
<PUT-DECL item pattern>

- 92 -

MDL built-in

PUT-DECL defines an alias, item, for a pattern. See DECL?, GDECL and GET-DECL for more
on declaration patterns.

Examples:

<DECL? T BOOLEAN> --> Error

<PUT-DECL BOOLEAN '<OR ATOM FALSE>>
<DECL? T BOOLEAN> --> T
<DECL? "Hi" BOOLEAN> --> #FALSE

PUT-PURE-HERE
<PUT-PURE-HERE>

ZIL library

ZILF ignores this and always returns FALSE.

 PUTB
<PUTB table index new-value>

ZIL library

Put a byte new-value in the table at byte position index. Actual address is
table-address+index.

TABLE is a ZIL-specific structure that can be used both outside and inside ROUTINES. PUTB is
equivalent to the Z-code built-in PUTB.

Also see GETB, ZGET, ZPUT and ZREST.

Example:

<PUTB ,MYTABLE 1 !\A> --> Stores character A at
position 1 in MYTABLE

 PUTPROP
<PUTPROP item indicator [value]>

MDL built-in

PUTPROP stores value as an association on the item under the indicator and returns the
item. If no value is specified PUTPROP returns the value and then clears the association.

In ZILF there is a special indicator, PROPSPEC, that has a special meaning inside OBJECTs. A
PROPSPEC property is defined:

<PUTPROP item PROPSPEC [function]>

When an item defined in this way is used in an OBJECT, the function is invoked during the
compilation with the LIST (containing the item) as an argument. The return value from the

- 93 -

function must be a LIST and it is stored as value under PROPSPEC on the item. If no
function is specified the PROPSPEC for the item is cleared. See examples below.

See ASSOCIATIONS, AVALUE, GETPROP, INDICATOR, ITEM and NEXT.

Examples:

<SET L (1 2 3)>
<PUTPROP .L FOO "Hello"> --> (1 2 3)
<GETPROP .L FOO> --> "Hello"
<PUTPROP .L FOO> --> "Hello"
<GETPROP .L FOO> --> #FALSE

;"PROPSPEC, loop through all words and add to buzz"
<VERSION XZIP>
<OBJECT FOO

(ADJECTIVE SMALL CURIOUS)
(MYBUZZ "ABCD" "BAR" "BAZ")>

<DEFINE MYBUZZ-PROP (L)
<SET L <REST .L>> ;"Ignore MYBUZZ in LIST"
<MAPF ,LIST <FUNCTION (W) <VOC .W BUZZ>> .L>>

<PUTPROP MYBUZZ PROPSPEC MYBUZZ-PROP>
<ROUTINE GO () <TEST-PROPSPEC>>
<ROUTINE TEST-PROPSPEC ("AUX" W)

<TELL "Part-of-Speech, 4 = BUZZ" CR>
<SET W W?ABCD>
<TELL "ABCD = " N <GETB .W 6> CR>
<SET W W?BAR>
<TELL "BAR = " N <GETB .W 6> CR>
<SET W W?BAZ>
<TELL "BAZ = " N <GETB .W 6> CR>>

 PUTREST
<PUTREST list new-rest>

MDL built-in

PUTREST replaces the REST of list with new-rest and returns list. In other words, list
is assigned the first element of list and then all the elements from new-rest. Note that this
actually changes the list.

Examples:

<PUTREST (1 2 3) (A B)> --> (1 A B)

<SET L1 [<SET L2 (1 2 3)>]>
<PUTREST .L2 (A B)>
.L1 --> [(1 A B)]

<SET L1 [1 2 3]>
<SET L2 <PUTREST (!.L1) (A B)>>
.L1 --> [1 2 3]

- 94 -

.L2 --> (1 A B)

<SET L1 (1 2 3 4 5 6 7 8 9)>
<PUTREST <REST .L1 3> <REST .L1 7>>
.L1 --> (1 2 3 4 8 9)

 QUIT
<QUIT [exit-code]>

MDL built-in

QUIT exits ZILF (interpreter mode) and returns to the operating system with exit-code.

Example:

<QUIT>

 QUOTE
<QUOTE value>
'value ;"Alternative syntax"
MDL built-in

QUOTE returns value unevaluated.

Examples:

<SET F <QUOTE <+ 1 2>> --> Or <SET F '<+ 1 2>>
.F --> <+ 1 2>
<EVAL .F> --> 3

'%<+ 1 2> --> 3

 READSTRING
<READSTRING buffer-str channel [max-length-or-stop-chars]>

MDL built-in

READSTRING reads bytes from the channel into buffer-str and returns the number of bytes
read into buffer-str. The buffer-str needs to have room for the input. For each call to
READSTRING it either reads bytes to fill up the buffer-str or until
max-length-or-stop-chars is reached. The max-length-or-stop-chars can be a
FIX number of bytes or a STRING that halts input.

READSTRING returns the actual number of bytes read and returns 0 when the EOF is reached.

Example:

;"ZILF ver 0.9"
<SET CH <OPEN "READ" "../zillib/parser.zil">>
<SET BUFFER <ISTRING 10>>
<READSTRING .BUFFER .CH> --> 10
<LVAL BUFFER> --> "\"Library h"
<READSTRING .BUFFER .CH 6> --> 6

- 95 -

<LVAL BUFFER> --> "eader\"ry h"
<READSTRING .BUFFER .CH "ZIL"> --> 10
<LVAL BUFFER> --> "\n\n<SETG "
<CLOSE .CH> ;"\n = CR+LF"

 REMOVE
<REMOVE pname oblist>
<REMOVE atom>

MDL built-in

This REMOVEs the ATOM with pname from oblist. It returns FALSE If the ATOM is not on the
oblist.

<REMOVE atom> REMOVEs the atom from its OBLIST. FALSE is returned if it's not on its
OBLIST.

Examples:

FOO
<1 .OBLIST> --> (... ("FOO" FOO))
<REMOVE FOO>
<1 .OBLIST> --> FOO is removed from <1 .OBLIST>

FOO-1!-OB
FOO-2!-OB
<MOBLIST OB> --> FOO-1, FOO-2 on OB
<REMOVE "FOO-1" <MOBLIST OB>> --> FOO-1!-#FALSE ()
<MOBLIST OB> --> Only FOO-1 on OB
<REMOVE FOO-2!-OB>
<MOBLIST OB> --> OB is empty

 RENTRY
<RENTRY atoms ...>

MDL package system

RENTRY creates/moves one or more ATOMs to <ROOT> in a PACKAGE or DEFINITION. RENTRY
is only valid inside a PACKAGE or DEFINITION, if it's used outside an error is raised.

See DEFINITIONS, ENTRY, INCLUDE, INCLUDE-WHEN, PACKAGE, USE, USE-WHEN.

Examples:

<REMOVE ANSWER> ;"Secure that ATOM not on any OBLIST"
<PACKAGE "FOO">
<SETG ANSWER 42>
<RENTRY ANSWER>
<ENDPACKAGE>

,ANSWER --> 42 ;”Accessible without previous USE”

- 96 -

 REPEAT
<REPEAT [activation] (bindings ...) [decl] expressions ...>

MDL built-in

REPEAT defines a program block with its own set of bindings. REPEAT is similar to BIND and
PROG but unlike BIND it creates a default activation (like PROG) at the start of the block but
unlike PROG it also has an automatic AGAIN at the end of the block. It is possible to name an atom
to the activation but it is not necessary. A REPEAT-block repeatedly executes expressions until
it encounters a RETURN statement that will exit the block.

The decl is used to specify the valid TYPE of the variables. In its simplest form decl is
formatted like: #DECL ((X) FIX), meaning that X must be of the TYPE FIX. For more
information on how to format the decl see GDECL.

Also see AGAIN, BIND, PROG and RETURN for more details on how to control program flow.

Example:

<REPEAT ((X 1)) #DECL ((X) FIX)
<REPEAT ((X 2)) <PRIN1 .X> <RETURN>>
<PRIN1 .X> <RETURN>>

--> "21"

<DEFINE TEST-REPEAT ()
<PRINC "START ">
<REPEAT ((X 0))

<SET X <+ .X 1>>
<PRIN1 .X>
<COND (<=? .X 3> <RETURN>)> ;"--> exit block"

>
<PRINC " END">

>
<TEST-REPEAT> --> "START 123 END"

 REPLACE-DEFINITION
<REPLACE-DEFINITION name body ...>

ZIL library

This tells the compiler this block of code defined by name should replace a later
DEFAULT-DEFINITION block of code with the same name.

This is usually used when there is a library that is inserted (like "parser.zil") where some definitions
are possible to override.

Note that the REPLACE-DEFINITION is required to appear before the
DEFAULT-DEFINITION.

It is possible to do the same by setting REDEFINE to true. This actually makes it possible to change
ALL definitions (it is the last one that becomes the one actually compiled).

- 97 -

See DEFAULT-DEFINITION and REPLACE-DEFINITION..

 REST
<REST structure [count]>

MDL built-in

Return structure without its first count elements (count is default 1). Note that this is not a
copy of the structure, it is pointing to the same structure with another starting element.

structure must be an object that STRUCTURED? evaluates to true.

Note that TABLE is not a structure.

Also see BACK, LENGTH, NTH, PUT, SUBSTRUC and TOP.

Example:

<SETG STRUCT1 [1 2 3 4]> --> STRUCT1 = [1 2 3 4]
<SETG STRUCT2 <REST ,STRUCT1>> --> STRUCT2 = [2 3 4]
<PUT ,STRUCT2 1 5> --> STRUCT1 = [1 5 3 4],

STRUCT2 = [5 3 4]

 RETURN
<RETURN [value] [activation]>

MDL built-in

This returns value from program-block defined by activation. True is returned if no value
is specified. If activation is not specified RETURN will exit the current defined program-block
where an automatic activation was created (PROG and REPEAT creates automatic
activations, BIND does not).

In practice RETURN exits the current program-block and returns value to the outer
program-block defined by BIND (needs activation), PROG or REPEAT.

See AGAIN, BIND, PROG and REPEAT for more examples of using RETURN and details how to
control program flow.

Examples:

<PROG () <RETURN>> --> T

<PROG ACT ()
<PROG () <RETURN 42 .ACT>>

<RETURN 43>> ;"Never reached" --> 42

 ROOM
<ROOM name (property value ...) ...>

ZIL library

ROOM creates a room-object with the internal objectname, name. After the name follows LISTs of

- 98 -

properties for the ROOM and the values for each property. Which properties that define up a
ROOM is determined by the parser and it’s possible to add new properties with PROPDEF as long as
the parser is modified to support the new property. Usually the below properties are understood
by the parser and the properties IN (or LOC), DESC and FLAGS are required, the others are
optional.

IN or LOC Required property. The value is always ROOMS for ROOM-objects.
DESC Required property. The short description text of the ROOM. This is the

text that is, for example, printed in the statusbar.
FLAGS Required property. This lists all the flagbits that are set on this ROOM.
LDESC Optional property. The long description of the ROOM. This is the text

that is printed, for example, the first time the player visits the ROOM
(dir ...) Optional property. List a direction, dir and where it leads. There is 5

different types of EXITS:
UEXIT (“unconditional exit”). The syntax is (dir TO room-name). If
the player moves in this direction he is moved unconditionally to
room-name.
NEXIT (“non-exit”). The syntax is (dir "text-why-not"). The
text-why-not is printed when the player tries to move in this direction.
Use this only if you want a different text than the standard message, typically
something like "You can’t move in that direction!".
CEXIT (“conditional exit”). The syntax is (dir TO room-name IF
gval [ELSE "text-why-not"]). This moves the player if the global
value, gval, is TRUE. The ELSE-part is optional and the standard message
is printed if it is not supplied.
DEXIT (“door-exit”). The syntax is (dir TO room-name IF
door-name IS OPEN). This is a special case of CEXIT that moves the
player to room-name if the door-name has the OPENBIT set.
FEXIT (“function-exit”). The syntax is (dir PER routine-name).
This moves the player to the ROOM returned by the ROUTINE,
routine-name. If the routine returns FALSE it is presumed that the
routine has printed an appropriate message.

GLOBAL Optional property. This is a LIST of all the OBJECTs that is IN the
LOCAL-GLOBALS that are accessible from this ROOM. This could,
for example, be a door that is accessible from two different ROOMs.

THINGS Optional property. This creates one or more simple “pseudo-objects”.
Each object has three parts: a LIST of adjectives (FALSE if none), a LIST
of nouns and the name of the action-routine to call when this object is
accessed. In early Infocom games this property was called PSEUDO and had
a slightly different syntax.

ACTION Optional property. The syntax is (ACTION routine-name). This
ROUTINE takes one argument, by convention call RARG (“room-argument”),
and is called more than once during a turn with different values to RARG.
M-BEG, the routine-name is called with this value to RARG before any
OBJECTs or verb action-routines.
M-END, the routine-name is called with this value to RARG after any
OBJECTs or verb action-routines.
M-LOOK, the routine-name is called with this value to RARG when the
player LOOKs.

- 99 -

M-ENTER, the routine-name is called with this value to RARG when the
player enters the ROOM (before any room description).

Note that ROOMs can just as easily be created with OBJECT as long as they are (IN ROOMS).

See Learning ZIL, Steve E. Meretzky and ZIL Course, Marc S. Blank for more on properties, flagbits
and how to write and design games.

Example:

<ROOM INSIDE-HOUSE
(DESC "Inside House")
(IN ROOMS)
(LDESC

"You are standing inside the rotting house. The house is
sparsely furnished, in fact not at all. On one wall is
positioned a sign. Beside the sign is a button, and an open
trap-door is placed on the floor. The exit is west
and there is a walk-in closet in the eastern wall.")
(UP "You have yet to master the art of flying.")
(EAST TO CLOSET)
(WEST TO OUTSIDE-HOUSE IF FRONT-DOOR-FLAG ELSE ,MSG-025)
(DOWN PER TRAP-DOOR-F)
(ACTION INSIDE-HOUSE-F)
(FLAGS LIGHTBIT NDUNGEONBIT)
(THINGS (<>) (BUTTON) LIGHTBUTTON-F

(<>) (SIGN) HOUSE-SIGN-F
(<>) (HOUSE FLOOR CLOSET KEYHOLE) STANDARD-F)

(GLOBAL FRONT-DOOR)>

 ROOT
<ROOT>

MDL built-in

ROOT returns the OBLIST containing names of primitives (the same as <2 .OBLIST>). Initially
it contains all predefined SUBRs or FSUBRs, as well as OBLIST, DEFAULT, T, etc.

 ROUTINE
<ROUTINE name [activation-atom] arg-list body ...>

ZIL library

The ROUTINEs are the central building block in a ZIL-program. Inside the ROUTINE it is only
possible to use the reduced instruction set that can be executed on the Z-machine. It is the
instructions inside the ROUTINEs that are compiled to the actual ZIP-program.

ROUTINE defines a program block with its own set of bindings. It is possible to specify an
activation-atom to use as an argument to control the RETURN statement inside the
ROUTINE.

- 100 -

The arg-list is formatted the same way as FUNCTION, but the legal tokens is reduced to these:

Arguments The required arguments for this ROUTINE. The arguments are
bound to local variables inside this ROUTINE.

"OPT" The optional arguments for this ROUTINE. The arguments are
bound to local variables inside this ROUTINE and can be defined with
a default value. "OPTIONAL" is an alias for "OPT".

"AUX" Followed by any number of ATOMs that becomes local variables inside
this ROUTINE and can be defined with a default value. "EXTRA"
is a alias for "AUX".

"NAME" Followed by an ATOM that becomes the activation-atom for this
ROUTINE. This is equivalent to naming the activation-atom before
the arg-list. "ACT" is an alias for "NAME".

Default values for "OPT" and "AUX" are defined by a two-element LIST whose first element is
the ATOM and the second element is assigned to.

<ROUTINE TEST ("AUX" (X 1) (Y 2)) <+ .X .Y>>

Means that the local variables X and Y are initially assigned 1 and 2.

After the arg-list follows the ZIL-instructions that makes up the body of the ROUTINE.

Example:

;"Move all child objects from object src to object dst"
<ROUTINE MOVE-INVENTORY (SRC DST "AUX" X N)

<SET X <FIRST? .SRC>>
<REPEAT ()

<COND (.X
<SET N <NEXT? .X>>
<MOVE .X .DST>
<SET X .N>)

(T <RETURN>)>>>

 ROUTINE-FLAGS
<ROUTINE-FLAGS CLEAN-STACK?>

ZIL library

This sets flags to control how ZILF should compile. To clear, call FILE-FLAGS without any flags.
The flags are:

CLEAN-STACK? Tells the compiler to generate extra code to remove unneeded values
from the stack. Without it, the compiler will generate smaller code in
some cases, at the risk of potentially causing stack overflow at
runtime.

Examples:

<FILE-FLAGS CLEAN-STACK?>

 SET
<SET atom value [environment]>

- 101 -

MDL built-in

Assign value to the local atom.

It is possible to supply an environment for SET. See EVAL for more about the environment.

Example:

<PROG (X) <SET X 5> <RETURN .X>> --> 5

 SET-DEFSTRUCT-FILE-DEFAULTS
<SET-DEFSTRUCT-FILE-DEFAULTS args ...>

MDL built-in

SET-DEFSTRUCT-FILE-DEFAULTS is used to change the default behaviour of the
struct-option and the field-option tokens in DEFSTRUCT.

The newly defined defaults are only active in the same file as they were defined. If a file is loaded
via, for example, FLOAD or INSERT-FILE the defaults are the built-in defaults inside these files.

If SET-DEFSTRUCT-FILE-DEFAULTS is called without any arguments the built-in default
behaviour is restored.

The tokens that can have changed default behaviour are:

'CONSTRUCTOR Replace the default constructor (MAKE-).
'INIT-ARGS Replace the init arguments to the base-type. This is empty by default.
'NODECL Use 'NODECL, to get 'NODECL by default.
‘NOTYPE Use 'NOTYPE, to get 'NOTYPE by default.
'NTH Default ATOM for this is NTH. Change to other with

('NTH MY-NTH).
'PRINTTYPE Change the default ATOM for PRINTTYPE with

('PRINTTYPE MY-PRINTTYPE).
'PUT Default ATOM for this is PUT. Change to other with

('PUT MY-PUT).
'START-OFFSET Default value is 1. Change with ('START-OFFSET value).

See DEFSTRUCT for more on user defined structures.

Example:

<SET-DEFSTRUCT-FILE-DEFAULTS ('NTH GETB) ('PUT PUTB)
('START-OFFSET 0) 'NODECL ('INIT-ARGS (BYTE))>

<DEFSTRUCT B-TBL TABLE (B-TBL-X FIX 65) (B-TBL-Y FIX 111)>
<MAKE-B-TBL> --> #B-TBL %<TABLE (BYTE) 65 111>
<B-TBL-Y <MAKE-B-TBL>> --> 111

 SETG
<SETG atom value>

MDL built-in

- 102 -

Assign value to the global atom. If an atom already is assigned a value, it is changed.

Example:

<SETG MYVAR 42>--> Store 42 in global atom MYVAR

 SETG20
<SETG20 atom value>

ZIL library

Assign value to the global atom. If an atom already is assigned a value, it is changed.

SETG20 is an alias for SETG.

Example:

<SETG20 MYVAR 42> --> Store 42 in global atom MYVAR

 SORT
<SORT predicate vector [record-size] [key-offset]

[vector [record-size] ...]>

MDL built-in

SORT can sort a VECTOR (or TUPLE). The predicate can either be <> or a FUNCTION that
takes two keys and returns TRUE if the two records are correctly sorted and FALSE if they are
incorrectly sorted. For example ,G? will sort keys in ascending order and ,L? will sort keys in
descending order. If the predicate is <> the keys must be of the same TYPE and the vector
will be sorted in ascending order.

The record-size is the length of each record (default value is 1) and the key-offset is the
offset in the record to the value to use as the sort key (default value is 0).

If additional vectors are supplied all vectors can have their own record length but each
vector must have the same number of records. Records in the additional vectors are
interchanged based on how the main vector is sorted.

SORT returns the first sorted vector.

Examples:

<SORT <> [3 4 2 1]> --> [1 2 3 4]

<SET V [1 MONEY 2 SHOW 3 READY 4 GO]>
<SORT <> .V 2 1> --> [4 GO 1 MONEY 3 READY 2 SHOW]
<SORT ,L? .V 2> --> [4 GO 3 READY 2 SHOW 1 MONEY]

<SET V [1 MONEY 2 SHOW 3 READY 4 GO]>
<SORT <> [5 1 6 3 7 2 8 4] 1 0 .V 1>
.V --> [MONEY READY SHOW GO 1 2 3 4]

 SPNAME
<SPNAME atom>

- 103 -

MDL built-in

SPNAME ("shared printed name") should return the same string of the atom’s pname that is in its
OBLIST (i.e. pointing to the same storage and therefore not able to change or modify).

ZILF treats SPNAME as an alias to PNAME and returns a string copy of the atom’s pname.

See PNAME.

 STRING
<STRING values ...>

MDL built-in

STRING returns a concatenated string of all values. values can be character or string.

A string is a block of contiguous bytes where each byte holds a character. See more about STRING
structure in The MDL Programming Language, Appendix 1.

Example:

<STRING !\A <ASCII 66> "CD"> --> "ABCD"

 STRUCTURED?
<STRUCTURED? value>

MDL built-in

STRUCTURED? is a predicate and returns true if value is of a structured TYPE. The structured
TYPEs are:

CHANNEL
DECL
FALSE
FORM
FUNCTION
LIST
MACRO
OBLIST
SEGMENT
SPLICE
STRING
VECTOR

Examples:

<STRUCTURED? <LIST 1 2 3>> --> T
<STRUCTURED? <TABLE 1 2 3>> --> #FALSE

 SUBSTRUC
<SUBSTRUC structure-from [rest] [amount] [structure-to]>

- 104 -

MDL built-in

Copies an amount number of elements, starting at rest, from structure-from. The result is
copied into structure-to, if supplied, otherwise a new structure is returned.

Default value for rest is 0 and default value for amount is LENGTH – rest (in other words,
copies from rest to end of structure-from).

structure-from must be of PRIMTYPE LIST, VECTOR or STRING and structure-to
must be of the same PRIMTYPE as struture-from and have enough room for the SUBSTRUC
to fit.

Also see BACK, LENGTH, NTH, PUT, REST and TOP.

Examples:

<SUBSTRUC "ABCD" 1 2> --> "BC"

<SETG STR1 "EEEEEE">
<SUBSTRUC "ABCD" 1 2 ,STR1> --> STR1 = "BCEEEEEE"

 SUPPRESS-WARNINGS?
 <SUPPRESS-WARNINGS? all | none | codes ...>

ZILF compiler directive

SUPPRESS-WARNINGS? tells the compiler how to treat warnings. NONE is the default.

ALL Suppress all warnings.
NONE Don’t suppress any warnings.
codes Suppress listet warning codes.

Examples:

;"Examples must be compiled with -w, otherwise warnings is
always suppressed."

;"Compiles with warnings"
<SUPPRESS-WARNINGS? NONE>
<GLOBAL X 5>
<ROUTINE GO () <TELL N .X>>

;"Compiles with suppressed warnings"
<SUPPRESS-WARNINGS? ALL>
<GLOBAL X 5>
<ROUTINE GO () <TELL N .X>>

;"Compiles with suppressed warnings"
<SUPPRESS-WARNINGS? "ZIL0204">
<GLOBAL X 5>
<ROUTINE GO () <TELL N .X>>

- 105 -

 SYNONYM
<SYNONYM original synonyms ...>

ZIL parser library

SYNONYM creates one or more synonyms to the original verb, adjective, preposition or direction.
Instead of SYNONYM it is also possible to use VERB-SYNONYM, ADJ-SYNONYM,
PREP-SYNONYM and DIR-SYNONYM for verbs, adjectives, prepositions and directions
respectively, ZILF handles them all like aliases to SYNONYM.

Note that due to the way words, especially adjectives and nouns, are stored in the vocabulary
synonyms for adjectives only work in version 3 (ZIP) games.

Examples:

<SYNONYM NORTH FORE>
<SYNONYM SOUTH AFT>
<SYNONYM WEST PORT>
<SYNONYM EAST STARBOARD>

<SYNTAX PUT OBJECT = V-INSERT>
<VERB-SYNONYM PUT SLIDE DIP SOAK>

 SYNTAX
<SYNTAX verb [prep1] [OBJECT] [(FIND flag-name)]

[(search-flags ...)] [prep2] [OBJECT]
[(FIND flag-name)] [(search-flags ...)]

= action-routine-name [preaction-routine-name]>

ZIL parser library

SYNTAX defines a verb-phrase and specifies which action-routine-name should be called
when an input matches this verb-phrase. A SYNTAX must contain a verb and an
action-routine-name. Optionally it can contain one direct noun-phrase, the first token
OBJECT, and one indirect noun-phrase, the second token OBJECT. Each noun-phrase can also have
a corresponding preposition, prep1 and prep2 respectively.

The noun-phrases can have FIND and search, search-flags, conditions defined. The token
FIND means that the OBJECT must have the flag-name bit set. If there is only one OBJECT in
the scope that meets the FIND condition the parser makes a GWIM (“Get what I mean”). For
example if there is only one door in the room with the DOORBIT set an OPEN assumes that you
mean that door.

One special case of FIND is when there is no indirect OBJECT but the SYNTAX ends with a
preposition. In these cases a special bit, KLUDGEBIT (or ROOMBIT), is used so that the player can
type sentences like “turn machine on” (<SYNTAX TURN OBJECT (FIND DEVICEBIT) ON
OBJECT (FIND KLUDGEBIT) = V-TURN-ON>).

The search-flags HAVE, MANY and TAKE define the following rules for the OBJECT:

HAVE The OBJECT must be in the player’s inventory (or inside open containers in
the player’s inventory). If the OBJECT is not in the inventory the parser fails

- 106 -

and prints something like “You don’t have the x,”.
MANY It is possible to use multiple OBJECTs with this verb.
TAKE If the OBJECT is not in the player’s inventory but takeble the parser

attempts to take the OBJECT, an so called implicit take is performed, before
continuing (the OBJECT is moved to the player’s inventory and the parser
prints something like “[Taken.]”).

The search-flags CARRIED, HELD, IN-ROOM and ON-GROUND can be seen as hints to the
parser where to first look for the OBJECT. These flags define the scope for the search. Note that
these flags are only hints to the parser and if the OBJECT is not in the defined scope the parser
continues the search in the other scopes before it fails. The default value for scope is that all flags
are set.

CARRIED Search for the OBJECT inside open containers in the player’s inventory.
HELD Search for the OBJECT in the player’s inventory at top-level (not inside

other containers).
IN-ROOM Search for the OBJECT inside containers on the ground.
ON-GROUND Search for the OBJECT on the ground at the top-level.

Finally after the token = (equal-sign) there is one or two ROUTINE-names specified,
action-routine-name and preaction-routine-name (optional). By convention these
handlers are usually named V-verb and PRE-verb, respectively.

The preaction-routine-name is fired before the OBJECTs action-routine and the
action-routine-name is fired after the OBJECTs action-routine. The preaction is usually
used to check the prerequisites for the verb, for example that you have a weapon before attacking
something so you don’t have to check that in every attackable OBJECTs action-routine. The
action-routine-name is usually used to handle response when the OBJECTs action-routine
fails.

Each occurrence of an action-routine-name together with an optional
preaction-routine-name must always have the same pattern (same
action-routine-name can’t exist with different preaction-routine-names).

It is possible to replace the search-flags with the GVAL NEW-SFLAGS. This is used with the
new parser in Arthur, Shogun and Zork Zero where the search-flags ALL, ROOM, HELD,
CARRIED, IN-ROOM, ON-GROUND, EVERYWHERE, MOBY and ADJACENT are defined.

Examples:

<SYNTAX QUIT = V-QUIT>
<SYNTAX CONTEMPLATE OBJECT = V-THINK-ABOUT>
<SYNTAX TAKE OBJECT (FIND TAKEBIT) (MANY ON-GROUND IN-ROOM)

= V-TAKE>
<SYNTAX PUT OBJECT (MANY TAKE HELD CARRIED) IN OBJECT

(FIND CONTBIT) = V-PUT-IN PRE-PUT-IN>
<SYNTAX WAKE OBJECT (FIND PERSONBIT) = V-WAKE>

<SYNTAX WAKE UP OBJECT (FIND PERSONBIT) = V-WAKE>
<SYNTAX WAKE OBJECT (FIND PERSONBIT) UP OBJECT

(FIND KLUDGEBIT) = V-WAKE>

- 107 -

TABLE
<TABLE [(flags ...)] values ...>

ZIL library

Defines a table containing the specified values.

These flags control the format of the table:

● WORD causes the elements to be 2-byte words. This is the default.
● BYTE causes the elements to be single bytes.
● LEXV causes the elements to be 4-byte records. If default values are given to ITABLE

with this flag, they will be split into groups of three: the first compiled as a word, the next
two compiled as bytes. The table is also prefixed with a byte indicating the number of
records, followed by a zero byte

● STRING causes the elements to be single bytes and also changes the initializer format. This
flag may not be used with ITABLE. When this flag is given, any values given as strings
will be compiled as a series of individual ASCII characters, rather than as string addresses.

These flags alter the table without changing its basic format:

● LENGTH causes a length marker to be written at the beginning of the table, indicating the
number of elements that follow. The length marker is a byte if BYTE or STRING are also
given; otherwise the length marker is a WORD. This flag is ignored if LEXV is given

● PURE causes the table to be compiled into static memory (ROM).

The flag LENGTH is implied in LTABLE and PLTABLE. The flag PURE is implied in PTABLE and
PLTABLE.

Examples:

<TABLE 1 2 3 4> -->

Element 0
WORD

Element 1
WORD

Element 2
WORD

Element 3
WORD

1 2 3 4

<TABLE (BYTE LENGTH) 1 2 3 4> -->

Element 0
BYTE

Element 1
BYTE

Element 2
BYTE

Element 3
BYTE

Element 4
BYTE

4 1 2 3 4

TABLE is a ZIL-specific structure that can be used both outside and inside ROUTINES.

TELL-TOKENS
<TELL-TOKENS {pattern form} ...>

ZIL library

Replace current TELL-TOKENS with the specified list of pattern and form. These can then be

- 108 -

used in TELL. See ADD-TELL-TOKEN for a description of pattern and form.

Example (from Infocom's Trinity):

<TELL-TOKENS
(CR CRLF) <CRLF>
(N NUM) * <PRINTN .X>
(C CHAR CHR) * <PRINTC .X>
(D DESC) * <PRINTD .X>
(A AN) * <PRINTA .X>
THE * <THE-PRINT .X>
CTHE * <CTHE-PRINT .X>
THEO <THE-PRINT>
CTHEO <CTHE-PRINT>
CTHEI <CTHEI-PRINT>
THEI <THEI-PRINT>>

 TIME
 <TIME>

MDL built-in

ZILF ignores this and always returns 1.

 TOP
<TOP array>

MDL built-in

Returns array with all elements put back in array.

TOP only works on the structures VECTOR or STRING (arrays) and not on a LIST (a LIST is only
pointing forward).

Note that the returned array is not a copy but pointing to the same array with another starting
element.

Also see BACK, NTH, PUT, REST and SUBSTRUC.

Example:

<SETG STRUCT1 [1 2 3 4 5]> --> STRUCT1 = [1 2 3 4 5]
<SETG STRUCT2 <REST ,STRUCT1 2>> --> STRUCT2 = [3 4 5]
<TOP ,STRUCT2> --> STRUCT2 = [1 2 3 4 5]

 TUPLE
<TUPLE values ...>

MDL built-in

TUPLE is just like a VECTOR with the only difference that a TUPLE should live on the control

- 109 -

stack. The advantage of a TUPLE over a VECTOR is that a TUPLE doesn't need to be garbage
collected, the disadvantage is that a TUPLE only lives during the execution of the function where it
was declared. It is only valid to declare a TUPLE in the "AUX" or "OPTIONAL" part of a
functions definition or as a "TUPLE" in a functions definition.

The above is not entirely true for ZILF. In ZILF, TUPLE is treated as an alias to VECTOR.

A TUPLE defined in the "AUX" or "OPT" is just like a VECTOR. A "TUPLE" definition makes it
possible to have a variable number of arguments to a FUNCTION.

Examples:

<DEFINE MY+ ("TUPLE" T)
<REPEAT ((M 0))

<COND (<EMPTY? .T> <RETURN .M>)>
<SET M <+ .M <1 .T>>>
<SET T <REST .T>>

>
>

<MY+ 1 2 3> --> 6
<MY+ 4 5> --> 9

<TYPE <TUPLE 1 2 3>>--> VECTOR (in ZILF!)
TUPLE (in MDL)

 TYPE
<TYPE value>

MDL built-in

evaluates to the type of value. See also ALLTYPES.

Examples:

<TYPE !\A> --> CHARACTER
<TYPE <+1 2>> --> FIX
<TYPE #BYTE 42> --> BYTE

 TYPE?
<TYPE? value type-1 ... type-N>

MDL built-in

Evaluates to type-i only if <==? type-i > is true. It is faster and gives more information than
ORing tests for each TYPE. If the test fails for all type-i’s, TYPE? returns #FALSE ().

Examples:

<TYPE? !\A CHARACTER FIX> --> CHARACTER
<TYPE? <+1 2> CHARACTER FIX> --> FIX
<TYPE? #BYTE 42 CHARACTER FIX> --> #FALSE ()

- 110 -

 TYPEPRIM
<TYPEPRIM type>

MDL built-in

evaluates to the primitive type of type. The primitive types are ATOM, FIX, LIST, STRING,
TABLE and VECTOR.

Examples:

<TYPEPRIM CHARACTER> --> FIX
<TYPEPRIM FORM> --> LIST
<TYPEPRIM BYTE> --> FIX

 UNASSIGN
<UNASSIGN atom [environment]>

MDL built-in

Unassign global atom.

It is possible to supply an environment for ASSIGNED?. See EVAL for more about the
environment.

Example:

<SET X 1>
<ASSIGNED? X> --> True
<UNASSIGN X>
<ASSIGNED? X> --> False

 UNPARSE
<UNPARSE value>

MDL built-in

UNPARSE returns a STRING representation of value. Unlike PNAME, UNPASE prints an ATOMs
trailers if required.

Examples:USE

<UNPARSE 123> --> "123"

<UNPARSE <+ 1 2>> --> "3"

<UNPARSE FOO> --> "FOO"

<UNPARSE <ATOM "FOO">> --> "FOO!-#FALSE ()"
<PNAME <ATOM "FOO">> --> "FOO"

 USE
<USE package-name ...>

- 111 -

MDL package system

USE activates one or many package-names and makes its content available in the current
OBLIST-path. In practice USE copies the OBLIST package-name and adds it last to the local
OBLIST (<LVAL OBLIST>). This means that all ATOMs on the external package OBLIST
becomes available in current environment.

If the package-name is not available in the current environment, USE tries to load
“package-name.zil” from the current path.

USE only works together with PACKAGE and if the definition of the package-name is missing
from the environment or no file is found containing that definition is found, an error is raised.

See PACKAGE and USE-WHEN.

Example:

<USE "FOOFOO"> ;"Searches for file "foofoo.zil" which
contains the definition for
<PACKAGE "FOOFOO"> ..."

USE-WHEN
<USE-WHEN condition package-name ...>

MDL package system

USE-WHEN is exactly like USE but only activates the package-name if the condition
evaluates to TRUE.

See PACKAGE and USE.

Example:

<PACKAGE "FOO">
<SETG AAAA 1234>
<ENTRY AAAA>
<ENDPACKAGE>

<GASSIGNED? AAAA> --> #FALSE
<REMOVE AAAA> ;"Secure that ATOM not on any OBLIST"
<USE-WHEN <=? 1 2> "FOO">
<GASSIGNED? AAAA> --> #FALSE
<REMOVE AAAA> ;"Secure that ATOM not on any OBLIST"
<USE-WHEN <=? 1 1> "FOO">
,AAAA --> 1234

 VALID-TYPE?
<VALID-TYPE? atom>

MDL built-in

VALID-TYPE? returns the TYPE if the atom is a valid name of a TYPE (the atom name is in

- 112 -

ALLTYPES), otherwise FALSE.

Examples:

<VALID-TYPE? VECTOR> --> VECTOR

<VALID-TYPE? FOO> --> #FALSE
<NEWTYPE FOO FIX>
<VALID-TYPE? FOO> --> FOO

 VALUE
<VALUE atom [environment]>

MDL built-in

VALUE returns the value of an atom. If the atom has an LVAL then the LVAL is returned,
otherwise the GVAL of the atom is returned.

It is possible to supply an environment for VALUE. See EVAL for more about the environment.

Example:

<SETG X 3>
<SET X 4>
<VALUE X> ;"--> 4
<UNASSIGN X>
<VALUE X> ;"--> 3

 VECTOR
<VECTOR values ...>
[values ...] ;"Alternative syntax"

MDL built-in

This returns a VECTOR of containing values.

A VECTOR is a collection of items that occupies a continuous block of memory. This makes it easy
to traverse a VECTOR both forward and backward but costly to add or insert items in the VECTOR.
See more about VECTOR structure in The MDL Programming Language, Appendix 1.

Note that in MDL there is another type of vector, UVECTOR (uniform vector). In an UVECTOR
every item is of the same TYPE which makes an UVECTOR more space efficient. ZILF does not
support UVECTOR but treats short form definitions of an UVECTOR as a ordinary VECTOR

(![1 2 3!] --> [1 2 3]).

Examples:

<VECTOR 1 2 "AB" !\C> --> [1 2 "AB" !\C]
[1 2 "AB" !\C] --> [1 2 "AB" !\C]

<TYPE ![1 2 3!]> --> VECTOR (in ZILF)
UVECTOR (in MDL)

- 113 -

 VERB-SYNONYM
<VERB-SYNONYM original synonyms ...>

ZIL parser library

VERB-SYNONYM creates one or more synonyms to the original verb.

ZILF treats VERB-SYNONYM as an alias to SYNONYM.

 VERSION
<VERSION {ZIP | EZIP | XZIP | YZIP | number} [TIME]>

ZIL library

This tells the compiler which Z-machine version that this program is targeting.

Version Description

3 or ZIP Version 3 (file extension *.z3). Almost all classical Infocom
games are in this version. You are limited to 255 objects
(rooms+items) and the game can't be bigger than 128K.

4 or EZIP Version 4 (file extension *.z4). Infocom's "plus" games – AMFV,
Bureaucracy, Nord and Bert... and Trinity. This format supports
65535 objects and a game size up to 256K.

5 or XZIP Version 5 (file extension *.z5). Infocom's Beyond Zork, Border
Zone, Sherlock and the Solid Gold versions of older games. This
version adds things like UNDO, COLOR and timed input. This
format supports 65535 objects and a game size up to 256K.

6 or YZIP Version 6 (file extension *.z6). Infocom's Arthur, Journey,
Shogun and Zork Zero. This version primarily adds graphics.
This version supports game size up to 512K.

7 Version 7 (file extension *.z7). Post Infocom version. This
version supports game size up to 512K. Rarely used version that
is superseded by version 8.

8 Version 8 (file extension *.z8). Post Infocom version. This
version supports game size up to 512K.

In version ZIP the status line is drawn by the interpreter and the argument TIME specifies that the
status line should display hh:mm instead of score and moves. Global variable 2, usually SCORE,
holds the hour-part and global variable 3, usually MOVES, holds the minute-part.

Examples:

<VERSION XZIP> ;"Target Z-machine version 5"

<VERSION 8> ;"Target Z-machine version 8"

- 114 -

<VERSION ZIP TIME> ;"Target Z-machine version 3 with hh:mm"
<ROUTINE GO ()

<SETG SCORE 13>;"Game starting 13:30"
<SETG MOVES 30>

>

 VERSION?
<VERSION? (version-spec body ...) ...>

ZIL library

VERSION? Tell the compiler to use different code-blocks depending on the setting of VERSION.
The version-spec can be:

3 ZIP
4 EZIP
5 XZIP
6 YZIP
7
8

ELSE/T
Example:

<VERSION?
(ZIP <ROUTINE RTN-ZIP () ...>)
(XZIP <ROUTINE RTN-XZIP () ...>)
(ELSE <ROUTINE RTN-OTHER () ...>)

>

 VOC
<VOC string [part-of-speech]>

ZIL parser library

VOC inserts the string in the game vocabulary (dictionary). Normally there is no need to define
the vocabulary with VOC, the vocabulary is automatically updated with words when you define
ROOMs, OBJECTs, SYNTAX, etc.

What follows below is a description of the vocabulary when you use the standard parser library. The
vocabulary description for the new parser (<SETG NEW-PARSER? T>) is in ADD-WORD.

The part-of-speech can be one of the following:

part-of-speech Value Description
<> 0 None
BUZZ 4 Buzz-word
PREP 8 Preposition
DIR 16 Direction
ADJ or ADJECTIVE 32 Adjective
VERB 64 Verb
NOUN or OBJECT 128 Noun

- 115 -

The vocabulary then occupies7 or 9 bytes, depending on version, per entry distributed as follows.

Version 3

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Word up to 6 Z-characters (5 bit) PoS Value V2

Version 4-

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Word up to 9 Z-characters (5 bit) PoS V1 V2

PoS Byte 6 (or byte 4) contains the part-of-speech value (as above) plus if
the word is defined as a first part-of-speech in the first 2 bytes.

0 None
1 Verb first
2 Adjective first
3 Direction first

V1 Byte 7 (or byte 5) contains the words value (id). Each part-of-speech can
have 255 (65535 for NOUNs) unique words (synonyms have the same value
as parent).

V2 Byte 8 is used for NOUNs (V1 & V2 gives 2 bytes, 1-65535 OBJECTs).

The different part-of-speech and first definitions have all global values defined as:

P1?OBJECT 0
P1?VERB 1
P1?ADJECTIVE 2
P1?DIRECTION 3
PS?BUZZ-WORD 4
PS?PREPOSITION 8
PS?DIRECTION 16
PS?ADJECTIVE 32
PS?VERB 64
PS?OBJECT 128

Example:

<VERSION XZIP>
<VOC "FALSE" <>>
<VOC "NOUN" NOUN>
<VOC "BUZZ" BUZZ>
<VOC "VERB" VERB>
<VOC "ADJECTIVE" ADJ>
<VOC "PREP" PREP>

<ROUTINE GO () <TEST-VOC> <INPUT 1>>

- 116 -

<ROUTINE TEST-VOC ("AUX" P)
<SET P W?FALSE>

<TELL "FALSE: Pos=" N <GETB .P 6>
", V1=" N <GETB .P 7>
", V2=" N <GETB .P 8> CR>

<SET P W?NOUN>
<TELL "NOUN: Pos=" N <GETB .P 6>

", V1=" N <GETB .P 7>
", V2=" N <GETB .P 8> CR>

<SET P W?BUZZ>
<TELL "BUZZ: Pos=" N <GETB .P 6>

", V1=" N <GETB .P 7>
", V2=" N <GETB .P 8> CR>

<SET P W?VERB>
<TELL "VERB: Pos=" N <GETB .P 6>

", V1=" N <GETB .P 7>
", V2=" N <GETB .P 8> CR>

<SET P W?ADJECTIVE>
<TELL "ADJECTIVE: Pos=" N <GETB .P 6>

", V1=" N <GETB .P 7>
", V2=" N <GETB .P 8> CR>

<SET P W?PREP>
<TELL "PREP: Pos=" N <GETB .P 6>

", V1=" N <GETB .P 7>
", V2=" N <GETB .P 8> CR>>

-->

FALSE: Pos=0, V1=0, V2=0
NOUN: Pos=128, V1=1, V2=0
BUZZ: Pos=4, V1=255, V2=0
VERB: Pos=65, V1=255, V2=0
ADJECTIVE: Pos=32, V1=0, V2=0
PREP: Pos=8, V1=255, V2=0

WARN-AS-ERROR?
<WARN-AS-ERROR? value>

ZILF compiler directive

WARN-AS-ERROR? set to TRUE, tells the compiler to convert compiler warnings to errors. The
default value is FALSE.

Examples:

;"Compiles with warning [ZIL0204]"
<WARN-AS-ERROR? <>>
<GLOBAL X 5>
<ROUTINE GO () <TELL N .X>>

;"Don’t compile with error [ZIL0204]"

- 117 -

<WARN-AS-ERROR? T>
<GLOBAL X 5>
<ROUTINE GO () <TELL N .X>>

XFLOAD
<XFLOAD filename>

ZIL library

 ZILF ignores all but the first argument and treats XFLOAD as an alias to INSERT-FILE.

 XORB
<XORB numbers ...>

MDL built-in

Bitwise exclusive "or".

Examples:

<XORB 250 245> --> 11111010 XOR 11110101 = 00001111 (15)

 ZGET
<ZGET table index>

ZIL libarary

Returns WORD-record (2 bytes) stored at index.

TABLE is a ZIL-specific structure that can be used both outside and inside ROUTINES. ZGET is
equivalent to the Z-code built-in GET.

Also see GETB, PUTB, ZPUT and ZREST.

Example:

<ZGET <TABLE 0 1 2 3> 2> --> 2

 ZIP-OPTIONS
<ZIP-OPTIONS {BIG | COLOR | DISPLAY | MENU | MOUSE | SOUND

| UNDO} ...>

ZIL library

ZIP-OPTIONS sets the corresponding bits in the header. This tells the Z-machine that runs the
game, the interpreter, that the game intends to use these functions. The interpreter can, if it is unable
to provide the requested functionality, clear the bits in return.

Option Ver Description
BIG X ZILF ignores this.
COLOR 5- Sets bit 6 of byte 16 (Flags 2) in header (see Appendix B).

- 118 -

DISPLAY 5- Sets bit 3 of byte 16 (Flags 2) in header (see Appendix B).
MENU 6- Sets bit 8 of byte 16 (Flags 2) in header (see Appendix B).
MOUSE 5- Sets bit 5 of byte 16 (Flags 2) in header (see Appendix B).
SOUND 5- Sets bit 7 of byte 16 (Flags 2) in header (see Appendix B).
UNDO 5- Sets bit 4 of byte 16 (Flags 2) in header (see Appendix B).

Example (From zillib/parser.zil in ZILF 0.9):

;"Use UNDO and COLOR if version is 5+"
<VERSION?

(ZIP)
(EZIP)
(ELSE <ZIP-OPTIONS UNDO COLOR>)>

ZPACKAGE
 <ZPACKAGE package-name>

ZIL library

ZPACKAGE is an alias to PACKAGE.

 ZPUT
<ZPUT table index new-value>

ZIL library

Put a 16-bit WORD new-value in the table at word position index. Actual address is
table-address+index*2.

TABLE is a ZIL-specific structure that can be used both outside and inside ROUTINES. ZPUT is
equivalent to the Z-code built-in PUT.

Also see GETB, PUTB, ZGET and ZREST.

Examples:

<ZPUT ,MYTABLE 1 123> --> Stores 123 at position 1
in MYTABLE

 ZREST
<ZREST table bytes>

ZIL library

Return table without its first bytes. Note that this is not a copy of the table, it is pointing to
the same table with another starting address.

TABLE is a ZIL-specific structure that can be used both outside and inside ROUTINES. ZREST is
equivalent to the Z-code built-in REST.

Also see GETB, PUTB, ZGET and ZPUT.

- 119 -

Example:

<SETG TBL1 <TABLE 1 2 3 4>> --> TBL1 = [1 2 3 4]
<SETG TBL2 <ZREST ,TBL1 2>> --> TBL2 = [2 3 4]

Move 2 because
WORD-table!

<ZPUT ,TBL2 0 5> --> TBL1 = [1 5 3 4],
TBL2 = [5 3 4]

 ZSECTION
 <ZSECTION package-name>

ZIL library

ZSECTION is an alias to DEFINITIONS.

 ZSTART
<ZSTART atom>

ZIL library

Default starting ROUTINE for a compiled ZIL program is the ROUTINE GO. ZSTART can move to
ZIL entry point to another ROUTINE.

Example:

<ZSTART MAIN> --> Starts with ROUTINE MAIN instead of GO

 ZSTR-OFF
<ZSTR-OFF>

ZIL library

ZILF ignores this and always returns FALSE.

 ZSTR-ON
<ZSTR-ON>

ZIL library

ZILF ignores this and always returns FALSE.

ZZPACKAGE
 <ZZPACKAGE package-name>

ZIL library

 ZZPACKAGE is an alias to PACKAGE.

- 120 -

 ZZSECTION
 <ZZSECTION package-name>

ZIL library

ZZSECTION is an alias to DEFINITIONS.

- 121 -

 Z-code built-ins (use inside ROUTINE)
Sources:

ZIP: Z-language Interpreter Program, Joel M. Berez, Marc S. Blank and P. David Lebling

The Z-Machine Standards Document, Graham Nelson

The Inform Designer’s Manual, Graham Nelson

ZIL Language Guide, Tara McGrew

 *, MUL
<* numbers ...>
<MUL numbers ...> ;"Alternative syntax"

Zapf syntax Inform syntax
MUL mul

Multiply numbers.

Example:

<* 2 3 4> --> 24

 +, ADD
<+ numbers ...>
<ADD numbers ...> ;"Alternative syntax"

Zapf syntax Inform syntax
ADD add

All versions

Add numbers.

Example:

<+ 2 3 4> --> 7

 -, SUB
<- numbers ...>
<SUB numbers ...> ;"Alternative syntax"
<BACK number1 number2> ;"Alternative syntax"

Zapf syntax Inform syntax
SUB sub

All versions

Subtract first number by subsequent numbers.

- 122 -

If only one number is provided, it's subtracted from zero (i.e. negated).

Note that it is possible to use BACK as an alias for SUB.

Example:

<- 8 3 4> --> 1
<- 4> → -4
<BACK 2> --> 1 (Defaults to 1)
<BACK 1 2> --> -1

 /, DIV
</ numbers ...>
<DIV numbers ...> ;"Alternative syntax"

Zapf syntax Inform syntax
DIV div

All versions

Divide first number by subsequent numbers.

Example:

<* 20 5 2> --> 2

 0?, ZERO?
<0? value>
<ZERO? Value> ;"Alternative syntax"

Zapf syntax Inform syntax
ZERO? Jz

All versions

Predicate. True if value is 0 otherwise false.

Example:

<0? <- 1 1>> --> TRUE

 1?
<1? value>

Predicate. True if value is 1 otherwise false.

Example:

<1? <- 2 1>> --> TRUE

 =?, ==?, EQUAL?
<=? value1 value2...valueN>

- 123 -

<==? value1 value2...valueN> ;Alternative syntax"
<EQUAL? value1 value2...valueN> ;Alternative syntax"

Zapf syntax Inform syntax
EQUAL? Je

All versions

Predicate. True if value1 is equal to any of the values value2 to valueN.

Examples:

<=? 1 1> --> TRUE
<=? 1 2> --> FALSE
<=? 1 2 1> --> TRUE

 AGAIN
<AGAIN [activation]>

AGAIN means "start doing this again", where "this" is activation. If no activation is
supplied the most recent is used. In practice AGAIN is used to restart a program block (BIND, DO,
PROG, REPEAT or ROUTINE) again from the top. Note that arguments and variables for a
ROUTINE are reinitialized (to starting value, if supplied) otherwise they keep values between
iterations. BIND, DO, PROG and REPEAT don't reinitialize variables.

Also see BIND, DO, PROG, REPEAT and RETURN for more details how to control program flow.

Examples:

<ROUTINE TEST-AGAIN-1 ("AUX" X)
<SET X <+ .X 1>>
<TELL N .X " ">
<COND (<=? .X 5> <RETURN>)>
<AGAIN> ;"Start routine again, X keeps value"

>
<TEST-AGAIN-1> --> "1 2 3 4 5"

<ROUTINE TEST-AGAIN-2 ("AUX" (X 0))
<SET X <+ .X 1>>
<TELL N .X " ">
<COND (<=? .X 5> <RETURN>)> ;"Never reached"
<AGAIN> ;"Start routine again, X reinitialize to 0"

>
<TEST-AGAIN-2> --> "1 1 1 1 1 ..."

<ROUTINE TEST-AGAIN-3 ()
<BIND ACT1 ((X 0))

<SET X <+ .X 1>>
<TELL N .X " ">
<COND (<=? .X 5> <RETURN>)>

<AGAIN .ACT1> ;"Start block again from ACT1,"
> ;"X keeps value"

- 124 -

<TEST-AGAIN-3> --> "1 2 3 4 5"

<ROUTINE TEST-AGAIN-4 ()
<PROG ((X 0)) ;"PROG generates default activation"

<SET X <+ .X 1>>
<TELL N .X " ">
<COND (<=? .X 5> <RETURN>)>

<AGAIN> ;"Start block again from PROG,"
> ;"X keeps value"
<TEST-AGAIN-4> --> "1 2 3 4 5"

 AND
<AND expressions...>

Boolean AND. Requires that all expressions evaluate to true to return true. Exits on the first
expression that evaluates to false (rest of expressions are not evaluated).

Because 0 is considered false and all other values are considered true inside a routine AND returns 0
if one expression is false or the value of the last expression if all expressions are true.

Example:

<AND <=? 1 1> <N=? 1 2>> --> True
<AND <=? 1 2> <SET X 2>> --> X never set to 2 because

first predicate evaluates
to false

<SET X <AND 1 2 3 0 4>> --> X is set to 0
<SET X <AND 1 4 3 2>> --> X is set to 2

 APPLY
<APPLY routine values...>

Call the routine with values. <APPLY routine values ...> is equivalent to
<routine values ...>, but APPLY is often used when the routine to be called is resolved
during run-time (dispatch-table).

Examples:

<GLOBAL MYROUTINES <LTABLE ROUTINE1 ROUTINE2>>
...
<APPLY <GET ,MYROUTINES 1> .X> --> <ROUTINE1 .X>
<APPLY <GET ,MYROUTINES 2> .X> --> <ROUTINE2 .X>

<APPLY <GETP .OBJECT ,P?ACTION>> --> Call ACTION-routine
on OBJECT

 ASH, ASHIFT
<ASH number places>
<ASHIFT number places> ;"Alternative syntax"

Zapf syntax Inform syntax

- 125 -

ASHIFT art_shift

Versions: 5-

Arithmetic shift. Shift number left when places is positive and right if it is negative. When right
shift the sign is preserved (if bit 15 is 1 a 1 is shifted in, otherwise a 0 is shifted in).

1000 0000 0000 1010 --> 1100 0000 0000 0101

Also see LSH.

Examples:

<ASH 4 1> --> 8
<ASH 4 -2> --> 1

 ASSIGNED?
<ASSIGNED? Name>

Zapf syntax Inform syntax
ASSIGNED? check_arg_count

Versions: 5-

Predicate. Can test if an optional argument named name is supplied in call to routine.

Example:

<ROUTINE TEST("OPT" X)
<COND (<ASSIGNED? X>

<TELL "X is assigned." CR>
)
(ELSE

<TELL "X is not assigned." CR>
)>
>

<TEST> --> X is not assigned.
<TEST 1> --> X is assigned.

 BACK
<BACK table [bytes]>

Return table with address moved bytes back. If the count moves past the start of the table
no error is raised. Default value for bytes is 1.

Note that this is not a copy of the table, it is pointing to the same table with another starting
address.

Also see GET, GETB, PUT, PUTB and REST.

Example:

<GLOBAL TBL1 <TABLE 1 2 3 4>> --> TBL1 = [1 2 3 4]

- 126 -

<GLOBAL TBL2 <REST ,STRUCT1 4>> --> TBL2 = [3 4]
Move 4 because
WORD-table!

<SETG TBL2 <BACK ,TBL2 2>> --> TBL2 = [2 3 4]

 BAND, ANDB
<BAND numbers ...>
<ANDB numbers ...> ;"Alternative syntax"

Zapf syntax Inform syntax
BAND and

All versions

Bitwise AND.

Examples:

<BAND 33 96> --> 32
<BAND 33 96 64> --> 0

 BCOM
<BCOM value>

Zapf syntax Inform syntax
BCOM not

All versions

Bitwise NOT. Reverse all bits in the WORD value (16 bits).

Examples:

<BCOM #2 000011110001111> --> #2 1111000011110000

 BIND
<BIND [activation] (bindings...) expressions...>

BIND defines a program block with its own set of bindings. BIND is similar to PROG but BIND
doesn't create a default activation at the start of the block. If an activation is needed it
must be specified. AGAIN and RETURN without specified activation inside a BIND-block will
start over or return from the previous activation (most probably the ROUTINE).

Also see AGAIN, DO, PROG, REPEAT and RETURN for more details how to control program flow.

Example:

<ROUTINE TEST-BIND-1 ("AUX" X)
<TELL "START ">
<SET X 1>
<BIND (X)

- 127 -

<SET X 2>
<TELL N .X " "> ;"--> 2 (Inner X)"

>
<TELL N .X " "> ;"--> 1 (Outer X)"
<TELL "END" CR>

>
--> "START 2 1 END"

<ROUTINE TEST-BIND-2 ()
<TELL "START ">
<BIND (X)

<SET X <+ .X 1>>
<TELL N .X " ">
<COND (<=? .X 3> <RETURN>)> ;"--> exit routine"
<AGAIN> ;"--> top of routine"

>
<TELL "END" CR> ;"Never reached"

>
--> "START 1 START 2 START 3 "

 BOR, ORB
<BOR numbers ...>
<ORB numbers ...> ;"Alternative syntax"

Zapf syntax Inform syntax
BOR or

All versions

Bitwise OR.

Examples:

<BOR 33 96> --> 97
<BOR 33 96 64> --> 97

 BTST
<BTST value1 value2>

Zapf syntax Inform syntax
BTST test

All versions

Predicate. Binary test. Evaluates to true if all value2 bits are set in value1. Could be expressed
as <=? <BAND value1 value2> value2>.

Examples:

<BTST 64 64> --> TRUE
<BTST 64 63> --> FALSE

- 128 -

<BTST 97 33> --> TRUE

 BUFOUT
<BUFOUT value>

Zapf syntax Inform syntax
BUFOUT buffer_mode

Versions: 4-

Flag that controls if output is buffered (to enable proper word-wrap). value can be true or false.

Examples:

<BUFOUT <>> --> Turns off buffering(disables word-wrap)
<BUFOUT T> --> Turns on buffering

 CATCH
<CATCH>

Zapf syntax Inform syntax
CATCH catch

Versions: 5-

Used in conjunction with THROW. CATCH returns the current state of the stack (the "stack frame").
Also see THROW.

Example:

<SETG CATCH-POINT <CATCH>> --> Saves the current stack
frame in global variable

 CHECKU
<CHECKU character>

Zapf syntax Inform syntax
CHECKU check_unicode

Versions: 5-

Checks if a given unicode character can be printed and/or received from the keyboard. Return
is in bit 0 and 1 so the return result is either 0, 1, 2 or 3.

0 = character can not be printed and not received from keyboard
1 = character can be printed but not received from keyboard
2 = character can not be printed but received from keyboard
3 = character can both be printed and received from keyboard

Example:

- 129 -

<CHECKU 65> --> 3

 CLEAR
<CLEAR window-number>

Zapf syntax Inform syntax
CLEAR erase_window

Versions: 4-

Clears window with given window-number. If window-number is -1 it unsplit all windows
and then clears the resulting window. If window-number is -2 it clears all windows without
unsplitting.

Example:

<CLEAR 0> --> Clears window 0 (the "main"-window)

 COLOR
<COLOR fg-color bg-color> ;"Version 5"
<COLOR fg-color bg-color [window-number]> ;"Versions: 6-"

Zapf syntax Inform syntax
COLOR set_colour

Versions: 5-

Print text in given fg-color and bg-color from this point on (flushing out text in buffer in old
colors first). Version 6 supports a third argument, window-number. The colors available (if
interpreter supports it) are:

0 Current color

1 Default color

2 Black

3 Red

4 Green

5 Yellow

6 Blue

7 Magenta

8 Cyan

9 White

Example:

<COLOR 2 9> --> Set black text against white background

- 130 -

 COND
<COND (condition expressions...)...>

Test condition (predicate) and if condition evaluates to true expressions are executed.

IF-THEN style:

<COND (<AND <=? 1 1> <=? 2 2>> <TELL "IF-THEN <...>">)>

IF-THEN-ELSE style:

<COND (<AND <=? 1 1> <=? 2 2>>
<TELL "THEN <...>" CR>

)
(ELSE ;"Or T"

<TELL "ELSE <...>" CR>
)>

COND evaluates each condition in turn and executes the expressions directly after the first
condition that evaluates to true. ELSE is an alias for T so if the first condition is false the
second is always true and is executed.

SWITCH style:

<COND
(<=? .SWITCH 1>

<TELL "Variable SWITCH = 1" CR>)
(<=? .SWITCH 2>

<TELL "Variable SWITCH = 2" CR>)
(<=? .SWITCH 3>

<TELL "Variable SWITCH = 3" CR>)
(T

<TELL "Variable SWITCH not in (1 2 3)" CR>)
>

Note that only one of the (conditions expressions …)is executed, the conditions
after a condition that evaluates to true is skipped.

<COND
(T

<TELL "Variable SWITCH not in (1 2 3)" CR>)
(<=? .SWITCH 1>

<TELL "Variable SWITCH = 1" CR>)
(<=? .SWITCH 2>

<TELL "Variable SWITCH = 2" CR>)
(<=? .SWITCH 3>

<TELL "Variable SWITCH = 3" CR>)
>

In this case conditions for 1, 2 & 3 is never executed and should result in a compiler warning.

COPYT

- 131 -

<COPYT src-table dest-table length>

Zapf syntax Inform syntax
COPYT copy_table

Versions: 5-

Copies length number of bytes from src-table to dest-table. The tables are allowed to
overlap. If length is positive then the copy is done without corrupting the src-table. If
length is negative the copy is always forward from src-table to dest-table (the absolute
length number of bytes) even if this corrupts src-table.

Example:

<GLOBAL TABLE1 <TABLE 1 2 3>>
<GLOBAL TABLE2 <TABLE 0 0 0>>
<ROUTINE TEST-COPYT()

<COPYT ,TABLE1 ,TABLE2 6>
<GET ,TABLE2 2>

>

<TEST-COPYT> --> 3

 CRLF
<CRLF>

Zapf syntax Inform syntax
CRLF new_line

All versions

Prints carriage return and line feed.

Example:

<CRLF> --> Moves cursor to position 1 on new line

 CURGET
<CURGET table>

Zapf syntax Inform syntax
CURGET get_cursor

Versions: 4-

CURGET puts the current cursor row in record 0 and current cursor column in record 1 of the
supplied table.Both row and column are WORD (16-bit).

Example:

<GLOBAL CURTABLE <TABLE 0 0>>

- 132 -

<ROUTINE TEST-CURGET ()
<CURGET ,CURTABLE>

>

<TEST-CURGET> --> Puts current row and column in CURTABLE

 CURSET
<CURSET row column> ;"Versions: 4-5"
<CURSET row column [window-number]> ;"Versions: 6-"

Versions: 4-

CURSET moves the cursor to row and column in the current window (or supplied
window-number).

In versions 4-5 it is only possible to move the cursor in the upper window (window-number = 1).

In versions 6-, if row is -1 then the cursor is turned off (-2 turns it back on).

Example:

<CURSET 1 1> --> Move cursor to upper left corner in
current window

 DCLEAR
<DCLEAR picture-number [row] [column]>

Zapf syntax Inform syntax
DCLEAR erase_picture

Versions: 6-

Clears (draw background color) area covered by picture-number, starting at row and
column. Also see DISPLAY.

Example:

<DCLEAR 1 1 1> --> Clears picture 1

 DEC
<DEC name>

Zapf syntax Inform syntax
DEC dec

All versions

Decrease variable (signed) name with 1.

Example:

<ROUTINE TEST-DEC (X) <DEC .X>>

- 133 -

<TEST-DEC 45> --> 44
<TEST-DEC 0> --> -1

 DIRIN
<DIRIN stream-number>

Zapf syntax Inform syntax
DIRIN input_stream

All versions

Select input stream. Only stream-number 0 and 1 are valid.

0 Keyboard

1 File on host
Example:

<DIRIN 0> --> True and select input stream keyboard

 DIROUT
<DIROUT stream-number [table]> ;"Versions -5"
<DIROUT stream-number [table] [width]> ;"Versions 6-"

Zapf syntax Inform syntax
DIROUT output_stream

Directs output to one or more output streams (multiple streams can be active simultaneously). Turn
on stream with positive stream-number and turn off stream with negative stream-number.

If stream 3 is active a table must be supplied. WORD 0 in table holds number of printed
characters and byte 2 onward holds the characters printed. DIROUT can overrun table if not
enough space is allocated.

Later versions can format output text to width (number of characters if width is positive or
number of pixels if width is negative).

1 Screen

2 File on host (transcript)

3 Table

4 File of commands on host
Example:

<DIROUT 3> --> Turns on output to file
<DIROUT -3> --> Turns off output to file

 DISPLAY
<DISPLAY picture-number [row] [column]>

- 134 -

Zapf syntax Inform syntax
DISPLAY draw_picture

Versions: 6-

Draw picture-number at coordinates row and column. If row and column are omitted the current
cursor position is used.

Example:

<DISPLAY 1> --> Draws picture 1 at current cursor position

 DLESS?
<DLESS? name value>

Zapf syntax Inform syntax
DLESS? dec_chk

All versions

Predicate. Decrease variable (signed) name with 1 and returns true if variable name is lower than
value, otherwise returns false.

Example:

<ROUTINE TEST-DLESS? (X)
<PRINTN <DLESS? X 100>>
<CRLF>
<PRINTN .X>

>

<TEST-DLESS? 101> --> "0\n100"

 DO
<DO (name start end [step])
[(END expressions ...)] expressions ...>

A quirk of the DO statement, which can be thought of as a cross between a Pascal-style "for"
statement and a C-style "for" statement.

Pascal-style "for" statements loop over a range of values:

// Pascal
for i := 1 to 10 do ...
for j := 10 downto 1 do ...

// ZIL
<DO (I 1 10) ...>
<DO (J 10 1 -1) ...>

C-style "for" statements initialize some state, then mutate it and repeat until a condition becomes

- 135 -

false. In ZIL, the condition is reversed - the loop exits when it becomes true:

// C
for (i = first(obj); i; i = next(i)) { ... }

// ZIL
<DO (I <FIRST? .OBJ> <NOT .I> <NEXT? .I>) ...>

Notice that every Pascal-style loop can be transformed into a C-style loop:

// Pascal-style loops
<DO (I 1 10) ...>
<DO (J 10 1 -1) ...>

// C-style equivalents
<DO (I 1 <G? .I 10> <+ .I 1>) ...>
<DO (J 10 <L? .J 1> <- .J 1>) ...>

The quirk is that the behavior of DO depends on the syntax you use for each part.

If the third value inside the parens is a complex FORM -- meaning one that isn't a simple LVAL or
GVAL, like '.MAX' is -- it's assumed to be a "C-style" exit condition, otherwise it's assumed to be a
"Pascal-style" upper/lower bound. Likewise, the optional fourth value is treated as either a C-style
mutator or a Pascal-style step size.

More of the DO statement's quirks are demonstrated here:

<ROUTINE GO ()
<TEST-PASCAL-STYLE>
<TEST-C-STYLE>
<TEST-MIXED-STYLE>
<QUIT>>

<CONSTANT C-ONE 1>
<CONSTANT C-TEN 10>

<ROUTINE TEST-PASCAL-STYLE ("AUX" (ONE 1) (TEN 10))
<TELL "== Pascal style ==" CR>

<TELL "Counting from 1 to 10...">
;"1 2 3 4 5 6 7 8 9 10"
<DO (I 1 10)

(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from 1 to 10 with step 2...">
;"1 3 5 7 9"
<DO (I 1 10 2)

(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from 10 to 1...">
;"10 9 8 7 6 5 4 3 2 1"
<DO (I 10 1)

- 136 -

(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from 10 to 1 with step -2...">
;"10 8 6 4 2"
<DO (I 10 1 -2)

(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from .ONE to .TEN...">
;"1 2 3 4 5 6 7 8 9 10"
<DO (I .ONE .TEN)

(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from .TEN to .ONE...">
;"10"
;"Since the loop bounds aren't FIXes (numeric

literals), ZILF doesn't know the loop is meant
to count down, and it compiles a loop that counts

up and exits after the first iteration. A DO loop
whose condition is a constant or simple FORM always
runs at least once."

<DO (I .TEN .ONE)
(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from 10 to .ONE...">
;"10"
;"See above."
<DO (I 10 .ONE)

(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from .TEN to 1...">
;"10"
;"See above."
<DO (I .TEN 1)

(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from .TEN to .ONE with step -1...">
;"10 9 8 7 6 5 4 3 2 1"
<DO (I .TEN .ONE -1)

(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from ,C-TEN to ,C-ONE...">
;"10"

- 137 -

;"Even defining the loop bounds as CONSTANTs won't
tell ZILF that the loop needs to run backwards."

<DO (I ,C-TEN ,C-ONE)
(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from %,C-TEN to %,C-ONE...">
;"10 9 8 7 5 4 3 2 1"
;"The % forces ,C-TEN to be evaluated at read time,

so the loop bounds are specified as FIXes, allowing
ZILF to determine that the loop runs backwards."

<DO (I %,C-TEN %,C-ONE)
(END <CRLF>)
<TELL " " N .I>>

<CRLF>>

<OBJECT DESK
(DESC "desk")>

<OBJECT MONITOR
(DESC "monitor")
(LOC DESK)>

<OBJECT KEYBOARD
(DESC "keyboard")
(LOC DESK)>

<OBJECT MOUSE
(DESC "mouse")
(LOC DESK)>

<ROUTINE TEST-C-STYLE ()
<TELL "== C style ==" CR>

<TELL "Counting from 10 down to 1...">
;"10 9 8 7 6 5 4 3 2 1"
<DO (I 10 <L? .I 1> <- .I 1>)

(END <CRLF>)
<TELL " " N .I>>

<TELL "Counting from 10 up (!) to 1...">
;""
;"Nothing is printed, because the exit condition

is initially true. A DO loop whose condition is
a complex FORM can exit before the first iteration."

<DO (I 10 <G? .I 1> <+ .I 1>)
(END <CRLF>)
<TELL " " N .I>>

- 138 -

<TELL "On the desk:">
;"monitor mouse keyboard"
<DO (I <FIRST? ,DESK> <NOT .I> <NEXT? .I>)

(END <CRLF>)
<TELL " " D .I>>

<CRLF>>

<ROUTINE TEST-MIXED-STYLE ()
<TELL "== Mixed ==" CR>

<TELL "Powers of 2 up to 1000:">
;"1 2 4 8 16 32 64 128 256 512"
<DO (I 1 1000 <* .I 2>)

(END <CRLF>)
<TELL " " N .I>>

<CRLF>>

Highlights:

- Loops can include subsequent code in an (END ...) clause for brevity, e.g. to print a newline after a
list.

A Pascal-style DO can *sometimes* determine when it needs to run backwards, even if no step size
is provided.

Pascal and C style can be mixed in the same loop, e.g. <DO (I 1 1000 <* .I 2>) ...> to count powers
of 2 up to 1000.

 ERASE
<ERASE value>

Zapf syntax Inform syntax
ERASE erase_line

Versions: 4-

Versions 4 and 5: if the value is 1, erase from the current cursor position to the end of its line in
the current window. If the value is anything other than 1, do nothing.

Version 6: if the value is 1, erase from the current cursor position to the end of the its line in the
current window. If not, erase the given number of pixels minus one across from the cursor (clipped
to stay inside the right margin). The cursor does not move.

Example:

<ERASE 1> --> Clears from cursor to end of line

- 139 -

 F?
<F? expression>

Predicate. Test if expression evaluates to false.

Example:

<F? <=? 1 1>> --> False
<F? <=? 1 2>> --> True

 FCLEAR
<FCLEAR object flag>

Zapf syntax Inform syntax
FCLEAR clear_attr

All versions

Removes flag from object.

Example:

<FCLEAR ,TRAP-DOOR ,OPENBIT> --> Marks the trap-door as
closed

 FIRST?
<FIRST? object>

Zapf syntax Inform syntax
FIRST? get_child

All versions

Returns the first object inside (contained) in the object. Returns 0 (false) if no object exists.

Example:

<SET RM <FIRST? ,ROOMS>> --> Sets RM to first object in
ROOMS. Also evaluates to
true (all values not 0 is true)

 FONT
 ;"Version 5"
 ;"Versions 6-"

Zapf syntax Inform syntax
FONT set_font

Versions: 5-

- 140 -

Sets current font to number. Returns old fonts number. If the font number is not available 0
(false) is returned.

1 Normal font

3 Character graphics font
(see §16 in The Z-Machine Standards Document)

4 Monospace (fixed-pitch) font
Example:

 --> Sets fixed-pitch font. In version 3-4 this is
done by setting bit 1 of Flags 2 in header
<PUT 0 8 <BOR <GET 0 8> 2>>

 FSET
<FSET object flag>

Zapf syntax Inform syntax
FSET set_attr

All versions

Add flag to object.

Example:

<FSET ,TRAP-DOOR ,OPENBIT> --> Marks the trap-door as
open

 FSET?
<FSET? object flag>

Zapf syntax Inform syntax
FSET? test_attr

All versions

Predicate. Tests if the flag is set on the object.

Example:

<FSET? ,TRAP-DOOR ,OPENBIT> --> True if OPENBIT is set

 FSTACK
<FSTACK number [stack]>

Zapf syntax Inform syntax
FSTACK pop / pop_stack

Versions: 6-

- 141 -

Removes number of items from system stack or given stack (table).

Example:
<PUSH 123> <PUSH 0> <PUSH 0> <PUSH 0> <FSTACK 3> <POP>

---> 123

 G?, GRTR?
<G? value1 value2>
<GRTR? Value1 value2> ;Alternative syntax"

Zapf syntax Inform syntax
GRTR? Jg

All versions

Predicate. Returns true if value1 is greater than value2, otherwise false.

Examples:

<G? 5 4> --> T
<G? 4 5> --> <>

 G=?
<G=? value1 value2>

Predicate. Returns true if value1 is greater or equal to value2, otherwise false.

Examples:

<G=? 5 4> --> T
<G=? 5 5> --> T

 GET
<GET table offset>

Zapf syntax Inform syntax
GET loadw

All versions

Returns WORD-record (2 bytes) stored at offset.

Note: table is an address in memory so the WORD that is returned is at table+offset*2. It is legal
to use, for example, 0 as an address to retrieve information from the header.

Also see BACK, GETB, PUT, PUTB and REST.

Example:

<GET <TABLE 0 1 2 3> 2> --> 2

- 142 -

 GETB
<GETB table offset>

Zapf syntax Inform syntax
GETB loadb

All versions

Returns BYTE-record (1 byte) stored at offset.
Note: table is an address in memory so the BYTE that is returned is at table+offset. It is legal to use,
for example, 0 as an address to retrieve information from the header.

Also see BACK, GET, PUT, PUTB and REST.

Example:

<GETB <TABLE (BYTE) !\A !\B !\C !\D> 2> --> !\C

 GETP
<GETP object property>

Zapf syntax Inform syntax
GETP get_prop

All versions

Get property from the object. Returns default value if property is not declared in the
object.

Example:

<OBJECT MYOBJ (MYPROP 123)>

<GETP ,MYOBJ ,P?MYPROP> --> 123

 GETPT
<GETPT object property>

Zapf syntax Inform syntax
GETPT get_prop_addr

All versions

Get property address from object. Returns 0 (false) if property is not declared in the
object.

Example:

<OBJECT MYOBJ (MYPROP 123)>

<GET <GETPT ,MYOBJ ,P?MYPROP> 0> --> 123

- 143 -

<GETPT ,MYOBJ ,P?MYPROP2> --> 0

 GVAL
<GVAL name>
,name ;Alternative syntax"

Get value of global variable name. More often used in its short form ",name".

Example:

<GLOBAL X 5>

<GVAL X> --> 5
,X --> 5

 HLIGHT
<HLIGHT style>

Zapf syntax Inform syntax
HLIGHT set_text_style

Versions: 4-

Set text to style. It is possible to combine styles.

0 Normal

1 Inverse

2 Bold

4 Italic

8 Monospace

Example:

<HLIGHT 2> --> Set font to bold

 IFFLAG
<IFFLAG (compilation-flag-condition expressions...) ...>

IFFLAG inside a ROUTINE have the same behaviour as IFFLAG outside.See IFFLAG (outside
ROUTINE) for more information.

 IGRTR?
<IGRTR? name value>

Zapf syntax Inform syntax
IGRTR? inc_chk

- 144 -

All versions

Predicate. Increase variable (signed) name with 1 and returns true if variable name is greater than
value, otherwise returns false.

Example:

<ROUTINE TEST-IGRTR? (X)
<PRINTN <IGRTR? X 100>>
<CRLF>
<PRINTN .X>

>

<TEST-IGRTR? 100> --> "1\n101"
<TEST-IGRTR? 99> --> "0\n100"

 IN?
<IN? object1 object2>

Zapf syntax Inform syntax
IN? jin

All versions

Predicate. Returns true if object1 is in object2 (object1 has object2 as parent),otherwise
false.

Example:

<OBJECT ANIMAL>
<OBJECT CAT (LOC ANIMAL)>

<IN? ,CAT ,ANIMAL> --> T
<IN? ,ANIMAL ,CAT> --> <>

 INC
<INC name>

Zapf syntax Inform syntax
INC inc

All versions

Increment name by 1. (This is signed, so -1 increments to 0)

Example:

<GLOBAL X 5>

<INC ,X> --> X=6

- 145 -

 INPUT
<INPUT 1 [time] [routine]>

Zapf syntax Inform syntax
INPUT read_char

Versions: 4-

INPUT reads a single character from the keyboard. Calls routine every time*0.1 s. If routine returns
true input is aborted.

Examples:

<INPUT 1> --> Wait for keypress

<ROUTINE WAIT-TWO-SECONDS ()
<INPUT 1 20 ABORT-WAIT>

>

<ROUTINE ABORT-WAIT () <RETURN T>>

<WAIT-TWO-SECONDS> --> Pause two seconds (if not
interrupted by a keypress
from the keyboard

 INTBL?
<INTBL? value table length [rec-spec]> ;"Version 5, 7-"
<INTBL? value table length> ;"Version 4, 6"

Zapf syntax Inform syntax
INTBL? scan_table

Versions: 4-

INTBL? is a predicate that returns the address of value if value is in the table table of the
length length, otherwise 0.

In version 5, 7 and 8 the rec-spec describes the field where bit 7 is set for words and clear for
bytes, rest defines the length of the field.

Examples:

<T <INTBL? 3 <TABLE 1 2 3 4> 4>> --> T
<T <INTBL? 6 <TABLE 1 2 3 4> 4>> --> #FALSE

;"Search byte-table with record length 3 (ver 5, 7-)"
<T <INTBL? 8 <TABLE (BYTE) 2 0 1 4 0 1 8 0 1> 9 3>> --> T
<T <INTBL? 1 <TABLE (BYTE) 2 0 1 4 0 1 8 0 1> 9 3>> --> <>

;"Search word-table with record length 3 (ver 5, 7-)"
<T <INTBL? 8 <TABLE 2 0 1 4 0 1 8 0 1> 9 131>> --> T

- 146 -

<T <INTBL? 1 <TABLE 2 0 1 4 0 1 8 0 1> 9 131>> --> <>

 IRESTORE
<IRESTORE>

Zapf syntax Inform syntax
IRESTORE restore_undo

Versions: 5-

Restores game state saved to memory by ISAVE (undo).

 ISAVE
<ISAVE>

Zapf syntax Inform syntax
ISAVE save_undo

Versions: 5-

Save game state to memory that later can be restored by IRESTORE (undo). Returns 0 if ISAVE
fails, 1 if it is successful and -1 if the interpreter does not handle undo.

 ITABLE
<ITABLE [specifier] count [(flags...)] defaults ...>

Defines a table of count elements filled with default values: either zeros or, if the default list is
specified, the specified list of values repeated until the table is full.

The optional specifier may be the atoms NONE, BYTE, or WORD. BYTE and WORD change the
type of the table and also turn on the length marker (element 0 in the table contains the length of the
table), This can also be done with the flags (see TABLE about flags).

Examples:

<ITABLE 4 0> -->

Element 0
WORD

Element 1
WORD

Element 2
WORD

Element 3
WORD

0 0 0 0

<ITABLE (BYTE LENGTH) 4 0> -->

Element 0
BYTE

Element 1
BYTE

Element 2
BYTE

Element 3
BYTE

Element 4
BYTE

4 0 0 0 0

<ITABLE BYTE 4 0> -->

- 147 -

Element 0
BYTE

Element 1
BYTE

Element 2
BYTE

Element 3
BYTE

Element 4
BYTE

4 0 0 0 0

 L?, LESS?
<L? value1 value2>
<LESS? Value1 value2> ;Alternative syntax"

Zapf syntax Inform syntax
LESS? Jl

All versions

Predicate. Returns true if value1 is less than value2, otherwise false.

Examples:

<L? 5 4> --> <>
<L? 4 5> --> T

 L=?
<L=? value1 value2>

Predicate. Returns true if value1 is less or equal to value2, otherwise false.

Examples:

<L=? 5 4> --> <>
<L=? 5 5> --> T

 LEX
<LEX text parse [dictionary] [flag]>

Zapf syntax Inform syntax
LEX tokenise

Versions: 4-

Parse the text into parse. See READ for more info about parsing. The game dictionary is used if
not a dictionary table (LTABLE) is supplied. If the length of the dictionary is negative, the
dictionary can be unsorted. If the flag is set (true), unrecognized words are not written to
parse but their slot is left unmodified. This makes it possible to run LEX against different
dictionaries serially. Also see READ.

Example:

<GLOBAL TEXTBUF <TABLE (BYTE) !\c !\a !\t>>
<GLOBAL PARSEBUF <ITABLE 1 (LEXV) 0 0>>
<OBJECT CAT (SYNONYM CAT)>

- 148 -

<LEX ,TEXTBUF ,PARSEBUF>
<PRINTB <GET ,PARSEBUF 1>> --> "cat"

 LOC
<LOC object>

Zapf syntax Inform syntax
LOC get_parent

All versions

Returns parent to object.

Examples:

<OBJECT ANIMAL>
<OBJECT CAT (LOC ANIMAL)>

<=? <LOC ,CAT> ,ANIMAL> --> T
<LOC ,ANIMAL> --> 0

 LOWCORE-TABLE
<LOWCORE-TABLE field-spec length routine>

LOWCORE-TABLE reads the length number of bytes from field-spec and calls routine
between each byte. See appendix B for list of valid values for field-spec.

Example:

<LOWCORE-TABLE SERIAL 6 PRINTC> --> Reads 6 bytes from
SERIAL and print each
byte as character

 LOWCORE
<LOWCORE field-spec [new-value]>

LOWCORE reads and in some cases writes to the header information fields. See appendix B for list
of valid values for field-spec.

Examples:

<LOWCORE FLAGS <BOR <LOWCORE FLAGS> 2>> -->
Monospace bit (bit 1) in flags 2 is set

<PUT 0 8 <BOR <GET 0 8> 2>> --> Do the same as above
<PRINTN <BAND <LOWCORE RELEASEID> *3777*>>

--> Print the 11 lower bytes in releaseid

 LSH, SHIFT
<LSH number places>
<SHIFT number places> ;Alternative syntax"

- 149 -

Zapf syntax Inform syntax
SHIFT log_shift

Versions: 5-

Bitwise shift. Shift number left when places is positive and right if it is negative. When right
shifting the sign is not preserved (0 is always shifted in).

1000 0000 0000 1010 --> 0100 0000 0000 0101

Also see ASH.

Examples:

<LSH 4 1> --> 8
<LSH 4 -2> --> 1

 LTABLE
<LTABLE [(flags ...)] values ...>

Defines a table containing the specified values and with the LENGTH flag (see TABLE about
LENGTH and other flags).

 LVAL
<LVAL name>
.name ;Alternative syntax"

Get value of local variable name. More often used in its short form ".name".

Example:

<SET X 5>
<LVAL X> --> 5
.X --> 5

 MAP-CONTENTS
<MAP-CONTENTS (name [next] object)
[(END expressions ...)] expressions ...>

Loop over all objects that have an object as parent (all children to object). For each iteration
name is assigned the current child-object and next the child-object that will be name in the next
iteration (0 if the current name is the last child).

For each iteration the expressions are evaluated and, if supplied, the (END expressions
...) is evaluated last after all iterations.

Example:

<OBJECT SURVIVAL-KIT
(DESC "adventure survival kit") (WEIGHT 10)>
<OBJECT SWORD
(IN SURVIVAL-KIT) (DESC "sword") (WEIGHT 10)>

- 150 -

<OBJECT LAMP
(IN SURVIVAL-KIT) (DESC "brass lamp") (WEIGHT 5)>
<OBJECT SPOON
(IN SURVIVAL-KIT) (DESC "chrome spoon") (WEIGHT 2)>

<ROUTINE TEST-MAP-CONTENTS ()
<TELL "Your " D ,SURVIVAL-KIT " contains:" CR>
<MAP-CONTENTS (F ,SURVIVAL-KIT)

<TELL " a " D .F CR>
>

<TELL "Your " D ,SURVIVAL-KIT " contains:" CR>
<MAP-CONTENTS (F N ,SURVIVAL-KIT)

<TELL " a " D .F >
<COND (.N <TELL " (next item is the " D .N ")">)>
<TELL CR>

>

<BIND ((W 0))
<SET W <GETP ,SURVIVAL-KIT ,P?WEIGHT>>
<MAP-CONTENTS (F ,SURVIVAL-KIT)

(END <TELL "Total weight is = " N .W CR>)
<SET W <+ .W <GETP .F ,P?WEIGHT>>>

>
>

>

<TEST-MAP-CONTENTS> -->
Your adventure survival kit contains:

a sword
a chrome spoon
a brass lamp

Your adventure survival kit contains:
a sword (next item is the chrome spoon)
a chrome spoon (next item is the brass lamp)
a brass lamp

Total weight is = 27

 MAP-DIRECTIONS
<MAP-DIRECTIONS (name pt room)
[(END expressions ...)] expressions ...>

Loop over all defined directions in a room. For each iteration name is assigned the current direction
and pt is the property for this direction.

For each iteration the expressions are evaluated and, if supplied, the (END expressions
...) is evaluated last after all iterations.

Example:

- 151 -

<DIRECTIONS NORTH SOUTH EAST WEST>
<OBJECT CENTER (DESC "center room")

(NORTH TO N-ROOM)
(WEST TO W-ROOM)>

<OBJECT N-ROOM (DESC "north room")>
<OBJECT W-ROOM (DESC "west room")>

<ROUTINE TEST-MAP-DIRECTIONS ()
<TELL "You're in the " D ,CENTER>
<TELL CR "Obvious exits:" CR>
<MAP-DIRECTIONS (D P ,CENTER)

(END <TELL "Room description done." CR>)
<COND (<EQUAL? .D ,P?NORTH> <TELL " North">)

(<EQUAL? .D ,P?SOUTH> <TELL " South">)
(<EQUAL? .D ,P?EAST> <TELL " East">)
(<EQUAL? .D ,P?WEST> <TELL " West">)

>
<VERSION?

(ZIP <TELL " to the " D <GETB .P ,REXIT> CR>)
(ELSE <TELL " to the " D <GET .P ,REXIT> CR>)

>
>

>

 MARGIN
<MARGIN left right [window-number]>

Zapf syntax Inform syntax
MARGIN set_margins

Versions: 6-

Set left and right margin (in pixels) in the given window-number. If no window-number
is specified MARGIN sets margins in window-number 0.

Example:

<MARGIN 1 1> --> set 1 pixel margin in window 0

 MENU
<MENU number table>

Zapf syntax Inform syntax
MENU make_menu

Versions: 6-

Controls menu 3- (not menu 0-2, they are system menus). The table is a LTABLE of LTABLE.
Item 1 being the menu name. Item 2- are the entries.

- 152 -

Example (from Journey):

<GLOBAL MAC-SPECIAL-MENU

<LTABLE <TABLE (STRING LENGTH) "Journey">

<TABLE (STRING LENGTH) "Essences">

<TABLE (STRING LENGTH) "No Defaults">>>

...
<MENU 3 ,MAC-SPECIAL-MENU>

 MOD
<MOD number1 number2>

Zapf syntax Inform syntax
MOD mod

All versions

Returns remainder of 16-bit signed division. number2 is not allowed to be 0 ("Division by zero").

Examples:

<MOD 15 4> --> 3
<MOD -15 4> --> -3
<MOD -15 -4> --> -3
<MOD 15 -4> --> 3

 MOUSE-INFO
<MOUSE-INFO table>

Zapf syntax Inform syntax
MOUSE-INFO read_mouse

Versions: 6-

Reads mouse information into table. The table is 4 WORDS (2 bytes) long.

0 Y coordinate

1 X coordinate

2 Button bits (host dependent)

3 Menu (number*256+entry)

Example (from Journey):

<GLOBAL MOUSE-INFO-TBL <TABLE 0 0 0 0>>
...

- 153 -

<MOUSE-INFO ,MOUSE-INFO-TBL>

 MOUSE-LIMIT
<MOUSE-LIMIT window-number>

Zapf syntax Inform syntax
MOUSE-LIMIT mouse_window

Versions: 6-

Restricts mouse movement to window-number. If window-number is -1 all restrictions are
removed. 1 is the default window-number.

Example:

<MOUSE-LIMIT 1> --> Mouse constrained to window 1

 MOVE
<MOVE object1 object2>

Zapf syntax Inform syntax
MOVE insert_obj

All versions

Move object1 to be the first child of object2. Children of object1 move with it.

Example:

<OBJECT ANIMAL>
<OBJECT CAT>

<MOVE ,CAT ,ANIMAL>
<IN? ,CAT ,ANIMAL> --> T

 N=?, N==?
<N=? value1 value2...valueN>
<N==? value1 value2...valueN> ;Alternative syntax"

Predicate. True if value1 is not equal to any of the values value2 to valueN.

Examples:

<N=? 1 1> --> FALSE
<N=? 1 2> --> TRUE
<N=? 1 2 1> --> FALSE

 NEXT?
<NEXT? object>

- 154 -

Zapf syntax Inform syntax
NEXT? get_sibling

All versions

Returns object after object in object-list (sibling). Returns 0 (false) if no object exists.

Example:

<OBJECT ANIMAL>
<OBJECT CAT>
<OBJECT DOG>

<MOVE ,CAT ,ANIMAL>
<MOVE ,DOG ,ANIMAL>
<=? <NEXT? ,DOG> ,CAT> --> T

 NEXTP
<NEXTP object property>

Zapf syntax Inform syntax
NEXTP get_next_prop

All versions

Returns the property that comes after property on the object. Returns 0 if there are no more
properties after property. If property is 0 then NEXTP returns first property on object.

Example:

<OBJECT MYOBJ (FOO 123) (BAR 456)>

<=? <NEXTP ,MYOBJ 0> P?FOO> --> T
<=? <NEXTP ,MYOBJ P?FOO> P?BAR> --> T
<NEXTP ,MYOBJ P?BAR> --> 0 (false)

 NOT
<NOT expression>

Returns the boolean NOT of expression.

Examples:

<NOT <=? 1 2>> --> True (1)

 OR
<OR expressions...>

Boolean OR. Requires that one of the expressions evaluates to true to return true. Exits on the
first expression that evaluates to true (rest of expressions are not evaluated).

- 155 -

Because 0 is considered false and all other values are considered true inside a routine OR returns 0 if
all expressions are false or the value of the first true expression.

Example:

<OR <=? 1 2> <=? 1 1>> --> True
<OR <=? 1 1> <SET X 2>> --> X never set to 2 because

first predicate evaluates
to true

<SET X <OR 0 1 2 3>> --> X is set to 1
<SET X <OR 0 <> 0>> --> X is set to 0

 ORIGINAL?
<ORIGINAL?>

Zapf syntax Inform syntax
ORIGINAL? piracy

Versions: 5-

Predicate. Tests if the game disc is an original. Almost all modern interpreters always return true.

 PICINF
<PICINF picture-number table>

Zapf syntax Inform syntax
PICINF picture_data

Versions: 6-

Writes picture data from picture-number into table. Word 0 of table holds picture width
and word 1 holds picture height. Then follows the picture data.

If picture-number is 0, the number of available pictures is written into word 0 of table and
release number of picture file is written into word 1.

Example:
<GLOBAL MYPIC <ITABLE 2048 0>>

<PICINFO 1 ,MYPIC> --> Writes picture data into MYPIC

 PICSET
<PICSET table>

Zapf syntax Inform syntax
PICSET picture_table

Versions: 6-

Give the interpreter a table of picture numbers that the interpreter can then unpack from disc and

- 156 -

cache in memory.

 PLTABLE
<PLTABLE [(flags ...)] values ...>

Defines a table containing the specified values and with the PURE and LENGTH flag (see TABLE
about LENGTH, PURE and other flags).

 POP
<POP [stack]>

Zapf syntax Inform syntax
POP pull

Versions: 6-

Pops value of stack. If no stack is given, a value is popped from the game stack.

Example:

<PUSH 123>
<POP> --> 123

<GLOBAL MY-STACK <TABLE 3 0 0 123>>
<POP ,MY-STACK> --> 123

 PRINT
<PRINT string>

Zapf syntax Inform syntax
PRINT print_paddr

All versions

Prints the packed-string from the high memory (referenced by a packed address) that is pointed to
by string. String can be a direct address, a local or global variable, or come from the stack.

Example:

<GLOBAL MSG "Hello, sailor!">
<PRINT ,MSG> --> "Hello, sailor!"

 PRINTB
<PRINTB string>

Zapf syntax Inform syntax
PRINTB print_addr

All versions

- 157 -

Prints the unpacked-string from the dynamic or static memory (referenced by an unpacked address)
that is pointed to by string. String can be a direct address, a local or global variable, or come
from the stack.

Example:

<OBJECT MYOBJECT (SYNONYM HELLO)>

<PRINTB <GETP ,MYOBJECT ,P?SYNONYM>> --> "hello"

 PRINTC
<PRINTC character>

Zapf syntax Inform syntax
PRINTC print_char

All versions

Print character.

Example:

<PRINTC 65> --> A

 PRINTD
<PRINTD object>

Zapf syntax Inform syntax
PRINTD print_obj

All versions

Print description of object.

Example:

<GLOBAL MYOBJECT (DESC "sword">

<PRINTD ,MYOBJECT> --> "sword"

 PRINTF
<PRINTF table>

Zapf syntax Inform syntax
PRINTF print_form

Versions: 6-

Print a formatted table. Each line starts with a WORD that is the number of characters that

- 158 -

follows. Last byte in each line is 0.

 PRINTI
<PRINTI string>

Zapf syntax Inform syntax
PRINTI print

All versions

Print in-line string. The string is stored in-line with the code, immediately following the
instruction.

Example:

<PRINTI "Hello, sailor!"> --> "Hello, sailor!"

 PRINTN
<PRINTN number>

Zapf syntax Inform syntax
PRINTN print_num

All versions

Print number.
Example:

<PRINTN <+ 1 3>> --> 4
<PRINTN -42> --> -42

 PRINTR
<PRINTR string>

Zapf syntax Inform syntax
PRINTR print_ret

All versions

The same as PRINTI with the addition that PRINTR prints the string and then executes a CRLF
followed by a RTRUE.

Example:

<PRINTR "Hello, Sailor!"> --> "Hello, sailor!\n"

 PRINTT
<PRINTT table width [height] [skip]>

Zapf syntax Inform syntax

- 159 -

PRINTT print_table

Versions: 5-

Print table (string) in rectangle defined by width and height. Default height is 1. If skip
is given then that number of characters is skipped between lines.

Examples:

<GLOBAL MYTEXT <TABLE (STRING) "hansprestige">>

<PRINTT ,MYTEXT 6> --> "hanspr\n"
<PRINTT ,MYTEXT 4 3> --> "hans\npres\ntige\n"
<PRINTT ,MYTEXT 3 3 1> --> "han\npre\ntig\n"

 PRINTU
<PRINTU number>

Zapf syntax Inform syntax
PRINTU print_unicode

Versions: 5-

Print unicode-character number.

Examples:

<PRINTU 65> --> A
<PRINTU 196> --> Ä

 PROG
<PROG [activation] (bindings...) expressions...>

PROG defines a program block with its own set of bindings. PROG is similar to BIND but PROG
automatically creates a default activation at the start of the block which you optionally can name.
This means that AGAIN moves program execution to this activation. RETURN exits this
PROG-block.

Note that there is a special variable, DO-FUNNY-RETURN?, that controls how RETURN with value
should be handled. If DO-FUNNY-RETURN? is true then RETURN value returns from ROUTINE,
otherwise it returns from PROG. DO-FUNNY-RETURN? is default false in version 3-4 and default
true in versions 5-.

Also see AGAIN, BIND, DO, REPEAT and RETURN for more details on how to control program
flow. AGAIN and RETURN have examples on how activation and DO-FUNNY-RETURN? works.

Examples:

;"Block have own set of atoms"
<ROUTINE TEST-PROG-1 ("AUX" X)

<SET X 2>
<TELL "START: ">

- 160 -

<PROG (X)
<SET X 1>
<TELL N .X " "> ;"Inner X"

>
<TELL N .X> ;"Outer X"
<TELL " END" CR CR>

>
--> "START: 1 2 END"

;"AGAIN, Bare RETURN without ACTIVATION"
<ROUTINE TEST-PROG-2 ()
<TELL "START: ">
<PROG (X) ;"X is not reinitialized between iterations.

Default ACTIVATION created."
<SET X <+ .X 1>>
<TELL N .X " ">
<COND (<=? .X 3> <RETURN>)> ;"Bare RETURN without

ACTIVATION will exit
BLOCK"

<AGAIN> ;"AGAIN without ACTIVATION will redo BLOCK"
>
<TELL "RETURN EXIT BLOCK" CR CR>

>
--> "START: 1 2 3 RETURN EXIT BLOCK"

;"AGAIN, RETURN with value but without ACTIVATION"
<ROUTINE TEST-PROG-3 ()

<TELL "START: ">
<PROG ((X 0)) ;"X is not reinitialized between

iterations. Default ACTIVATION created."
<SET X <+ .X 1>>
<TELL N .X " ">
<COND (<=? .X 3>

<COND (,FUNNY-RETURN?
<TELL "RETURN EXIT ROUTINE" CR CR>)>
<RETURN T>)> ;"RETURN with value but without

ACTIVATION will exit ROUTINE
(FUNNY-RETURN = TRUE)"

<AGAIN> ;"AGAIN without ACTIVATION will redo BLOCK"
>
<TELL "RETURN EXIT BLOCK" CR CR>

>
--> "START: 1 2 3 RETURN EXIT ROUTINE"

 PTABLE
<PTABLE [(flags ...)] values ...>

Defines a table containing the specified values and with the PURE flag (see TABLE about PURE

- 161 -

and other flags).

 PTSIZE
<PTSIZE property-address>

Zapf syntax Inform syntax
PTSIZE get_prop_len

All versions

Get size in bytes of property at property-address.

Example:

<OBJECT MYOBJECT (FOO 1 2 3)>

<PTSIZE <GETPT ,MYOBJECT ,P?FOO>> --> 6

 PUSH
<PUSH value>

Zapf syntax Inform syntax
PUSH push

All versions

Push value on game stack.

Example:

<PUSH 123>

 PUT
<PUT table offset value>

Zapf syntax Inform syntax
PUT storew

All versions

Put a 16-bit WORD value in the table at word position offset. Actual address is
table-address+offset*2.

Note that table can be a byte-address in dynamic memory.

Also see BACK, GET, GETB, PUTB and REST.

Examples:

<PUT ,MYTABLE 1 123> --> Stores 123 at position 1
in MYTABLE

<PUT 0 8 <BOR <GET 0 8> 2>> --> Sets bit 1 in Flags 2 in

- 162 -

header (force monospace)

 PUTB
<PUTB table offset value>

Zapf syntax Inform syntax
PUTB storeb

All versions

Put a byte value in the table at byte position offset. Actual address is table-address+offset.

Note that table can be a byte-address in dynamic memory.

Also see BACK, GET, GETB, PUT and REST.

Example:

<PUTB ,MYTABLE 1 !\A> --> Stores character A at
position 1 in MYTABLE

 PUTP
<PUTP object property value>

Zapf syntax Inform syntax
PUTP put_prop

All versions

Put value into property on the object.

Example:

<OBJECT MYOBJ (MYPROP 123)>

<PUTP ,MYOBJ ,P?MYPROP 456> --> Stores 456 in property
MYPROP on MYOBJ

 QUIT
<QUIT>

Zapf syntax Inform syntax
QUIT quit

All versions

Halts game execution. No questions asked.

 RANDOM
<RANDOM range>

- 163 -

Zapf syntax Inform syntax
RANDOM random

All versions

Returns a random number between 1 and range. If range is negative the randomizer is reseeded
with -range (absolute value of range).

Example:

<- <RANDOM 101> 1> --> Generates random number
between 0-100

 READ
<READ text parse> ;"Versions 1-3"
<READ text parse [time] [routine]> ;"Version 4"
<READ text [parse] [time] [routine]> ;"Versions 5-"

Zapf syntax Inform syntax
READ aread / sread

All versions

Read text from the keyboard and parse it. Result is stored in two byte-tables. Byte 0 in text must
contain the max-size of the buffer and if parse is supplied, byte 0 of it must contain a max number
of words that will be parsed.

In version 5-, byte 1 should be 0 before READ begins, otherwise READ appends characters starting
from value in byte 1.

After READ, text contains:

Version 1-4,

Byte 0 Max number of chars read into the buffer
1- The typed chars all converted to lowercase

Version 5-,

Byte 0 Max number of chars read into the buffer
1 Actual number of chars read into the buffer
2- The typed chars all converted to lowercase

parse contains:

Byte 0 Max number of words parsed
1 Actual number of words parsed
2-3 Address to first word in dictionary (0 if word is not in it)
4 Length of first word
5 Start position (in text) of first word
6-9 Second word
...

- 164 -

Example:

<GLOBAL READBUF <ITABLE BYTE 63>>
<GLOBAL PARSEBUF <ITABLE BYTE 28>>
<ROUTINE READ-TEST ("AUX" WORDS WLEN WSTART WEND)
<PUTB ,READBUF 0 60>
<PUTB ,PARSEBUF 0 6>
<READ ,READBUF ,PARSEBUF>
<SET WORDS <GETB ,PARSEBUF 1>> ;"# of parsed words"
<DO (I 1 .WORDS)

<SET WLEN <GETB .PARSEBUF <* .I 4>>>
<SET WSTART <GETB .PARSEBUF <+ <* .I 4> 1>>>
<SET WEND <+ .WSTART <- .WLEN 1>>>
<TELL "word " N .I " is " N .WLEN " char long. ">
<TELL "The word is '">
<DO (J .WSTART .WEND)

<PRINTC <GETB .READBUF .J>> ;"To lcase!"
>
<TELL "'." CR>

>
>

See The Inform Designer’s Manual (ch. §2.5, p. 44-46) for more details about READ.

 REMOVE
<REMOVE object>

Zapf syntax Inform syntax
REMOVE remove_obj

All versions

Remove object from parent. See MOVE how to reattach it to another object.

Example:

<OBJECT ANIMAL>
<OBJECT CAT (LOC ANIMAL)>

<REMOVE ,CAT> --> Detach CAT from ANIMAL

 REPEAT
<REPEAT [activation] (bindings...) expressions...>

REPEAT defines a program block with its own set of bindings. REPEAT is very similar to
PROG the only difference is that at the end of the block is an automatic AGAIN. REPEAT
automatically creates a default activation at the start of the block which you optionally can name.
This means that AGAIN moves program execution to this activation. RETURN exits this
REPEAT-block.

Note that there is a special variable, DO-FUNNY-RETURN?, that controls how RETURN with value

- 165 -

should be handled. If DO-FUNNY-RETURN? is true then RETURN value returns from ROUTINE,
otherwise it returns from REPEAT. DO-FUNNY-RETURN? is default false in version 3-4 and
default true in versions 5-.

Also see AGAIN, BIND, DO, PROG and RETURN for more details how to control program flow.
AGAIN and RETURN have examples on how activation and DO-FUNNY-RETURN? works.

Examples:

;"Bare RETURN without ACTIVATION"
<ROUTINE TEST-REPEAT-1 ()
<TELL "START: ">
<REPEAT (X) ;"X is not reinitialized between iterations.

Default ACTIVATION created."
<SET X <+ .X 1>>
<TELL N .X " ">
<COND (<=? .X 3> <RETURN>)> ;"Bare RETURN without

ACTIVATION will exit
BLOCK"

>
<TELL "RETURN EXIT BLOCK" CR CR>

>
--> "START: 1 2 3 RETURN EXIT BLOCK"

;"RETURN with value but without ACTIVATION"
<ROUTINE TEST-REPEAT-2 ()

<TELL "START: ">
<REPEAT ((X 0)) ;"X is not reinitialized between

iterations. Default ACTIVATION created."
<SET X <+ .X 1>>
<TELL N .X " ">
<COND (<=? .X 3>

<COND (,FUNNY-RETURN?
<TELL "RETURN EXIT ROUTINE" CR CR>)>
<RETURN T>)> ;"RETURN with value but without

ACTIVATION will exit ROUTINE
(FUNNY-RETURN = TRUE)"

>
<TELL "RETURN EXIT BLOCK" CR CR>

>
--> "START: 1 2 3 RETURN EXIT ROUTINE"

 REST
<REST table [bytes]>

Return table without its first bytes (bytes is default 1). Note that this is not a copy of the
table, it is pointing to the same table with another starting address.

Also see BACK, GET, GETB, PUT and PUTB.

Example:

- 166 -

<GLOBAL TBL1 <TABLE 1 2 3 4>> --> TBL1 = [1 2 3 4]
<GLOBAL TBL2 <REST ,TBL1 2>> --> TBL2 = [2 3 4]

Move 2 because
WORD-table!

<PUT ,TBL2 0 5> --> TBL1 = [1 5 3 4],
TBL2 = [5 3 4]

 RESTART
<RESTART>

Zapf syntax Inform syntax
RESTART restart

All versions

Restarts the game. No questions asked. The only things that survive a restart are bit 0 and bit 1 of
Flags 2 in the header (setting for transcribing and monospace).

 RESTORE
<RESTORE> ;"Versions 1-4"
<RESTORE [table] [bytes] [filename]> ;"Versions 5-"

Zapf syntax Inform syntax
RESTORE restore

All versions

RESTORE a game to a previously saved state. All questions about filename and path are asked by
the interpreter.

If RESTORE fails, game execution continues with the next statement after RESTORE.

If RESTORE is successful, game execution continues from where the SAVE was issued (SAVE
returns 2 in this case).

See The Inform Designer’s Manual (ch. §42, p. 319) and The Z-machine Standards Document for a
description about how to SAVE and RESTORE auxiliary files.

Example:

<ROUTINE SAVE-GAME ("AUX" RESULT)
<SET RESULT <SAVE>>
<COND (<=? .RESULT 0> <TELL "Save failed." CR>)>
<COND (<=? .RESULT 1> <TELL "Save successful." CR>)>
<COND (<=? .RESULT 2> <TELL "Restore successful." CR>)>

>

<ROUTINE RESTORE-GAME ()
<RESTORE>
<TELL "Restore failed." CR>

- 167 -

>

 RETURN
<RETURN [value] [activation]>

Zapf syntax Inform syntax
RETURN ret

All versions

RETURN from current routine with value. Returns 1 (true) if no value is given.

RETURN is also used in commands that control program flow to exit program blocks. Also see
AGAIN, BIND, DO, PROG and REPEAT for more details how to control program flow.

Examples:

<RETURN> --> Returns 1
<RETURN 42> --> Returns 42

 RFALSE
<RFALSE>

Zapf syntax Inform syntax
RFALSE rfalse

All versions

RFALSE always exits routine and returns false (0). Note that this differs from RETURN that can
both exit program blocks and routines.

 RFATAL
<RFATAL>

RFATAL always exits routine and returns FATAL-VALUE (2). Note that this differs from RETURN
that can both exit program blocks and routines.

 RSTACK
<RSTACK>

Zapf syntax Inform syntax
RSTACK ret_popped

All versions

Pops value from game stack and returns that value.

Example:

<PUSH 42>

- 168 -

<RSTACK> --> Returns 42

 RTRUE
<RTRUE>

Zapf syntax Inform syntax
RTRUE rtrue

All versions

RTRUE always exits routine and returns true (1). Note that this differs from RETURN that can both
exit program blocks and routines.

 SAVE
<SAVE> ;"Versions 1-4"
<SAVE [table] [bytes] [filename]> ;"Versions 5-"

Zapf syntax Inform syntax
SAVE save

All versions

SAVE a game state that later can be restored. All questions about filename and path are asked by the
interpreter.

SAVE returns 0 if SAVE fails and 1 if it is successful.

SAVE also can return 2. That means this is a continuation from a successful RESTORE.

See RESTORE on code example on SAVE and RESTORE.

See The Inform Designer’s Manual (ch. §42, p. 319) and The Z-machine Standards Document for a
description about how to SAVE and RESTORE auxiliary files.

 SCREEN
<SCREEN window-number>

Zapf syntax Inform syntax
SCREEN set_window

Versions: 3-

Select window-number for text output.

Note that in versions 3-5 only the lower screen (window-number = 0) has text-buffering and
word-wrap.

Example:

<SPLIT 3>
<SCREEN 1>

- 169 -

<TELL "West of House"> --> Split screen in 2 (upper
screen is 3 rows) and write
"West of House" in upper screen

 SCROLL
<SCROLL window-number pixels>

Zapf syntax Inform syntax
SCROLL scroll_window

Versions: 6-

Scrolls window-number up (pixels is positive) or down (pixels is negative) the number of
pixels supplied. The new lines are empty (background color).

 SET
<SET name value>

Zapf syntax Inform syntax
SET store

All versions

Store value in local variable name.

Example:

<SET MYVAR 42> --> Store 42 in local variable MYVAR

 SETG
<SETG name value>

Zapf syntax Inform syntax
SET store

All versions

Store value in global variable name. The name variable must be declared with GLOBAL outside
the ROUTINE.

Example:

<SETG MYVAR 42>--> Store 42 in global variable MYVAR

 SOUND
<SOUND number [effect] [volume]> ;"Versions 3-4"
<SOUND number [effect] [volrep] [routine]> ;"Versions 5-"

Zapf syntax Inform syntax

- 170 -

SOUND sound_effect

Versions: 3-

Plays sound number (1 = high-pitch beep, 2 = low-pitch beep and 3- is user defined).

Valid entries for effect are 1 = prepare, 2 = start, 3 = stop and 4 = finished with.

The volrep is calculated as 256 * repetitions + volume. Repetitions can be 0-255 (255 = infinite)
and volume 1-8, 255 (1 = quiet, 8 = loud, 255 = loudest possible. Note that repetitions only are
valid from version 5 onward. For version 5 and later a repetition equal to 0 is considered illegal but
it’s suggested that interpreters should treat this as a request to play the sound once.

If routine is supplied it is called after sound is finished.

See The Inform Designer’s Manual (ch. §42, p. 315-316 and ch. §43) and The Z-machine Standards
Document for a description about how to include sound in games.

 SPLIT
<SPLIT number>

Zapf syntax Inform syntax
SPLIT split_window

Versions: 3-

SPLIT screen in two parts with the upper part having number rows. If number is 0 the screen is
unsplit.The upper screen is window-number 1 and the lower screen is window-number 0.

See SCREEN for example on how to use SPLIT.

 T?
<T? expression>

Predicate. Test if expression evaluates to true (not 0).

Example:

<T? <=? 1 1>> --> True
<T? <=? 1 2>> --> False

 TABLE
<TABLE [(flags ...)] values ...>

Defines a table containing the specified values.

These flags control the format of the table:

● WORD causes the elements to be 2-byte words. This is the default.
● BYTE causes the elements to be single bytes.
● LEXV causes the elements to be 4-byte records. If default values are given to ITABLE

with this flag, they will be split into groups of three: the first compiled as a word, the next
two compiled as bytes. The table is also prefixed with a byte indicating the number of

- 171 -

records, followed by a zero byte
● STRING causes the elements to be single bytes and also changes the initializer format. This

flag may not be used with ITABLE. When this flag is given, any values given as strings
will be compiled as a series of individual ASCII characters, rather than as string addresses.

These flags alter the table without changing its basic format:

● LENGTH causes a length marker to be written at the beginning of the table, indicating the
number of elements that follow. The length marker is a byte if BYTE or STRING are also
given; otherwise the length marker is a WORD. This flag is ignored if LEXV is given

● PURE causes the table to be compiled into static memory (ROM).

The flag LENGTH is implied in LTABLE and PLTABLE. The flag PURE is implied in PTABLE and
PLTABLE.

Examples:

<TABLE 1 2 3 4> -->

Element 0
WORD

Element 1
WORD

Element 2
WORD

Element 3
WORD

1 2 3 4

<TABLE (BYTE LENGTH) 1 2 3 4> -->

Element 0
BYTE

Element 1
BYTE

Element 2
BYTE

Element 3
BYTE

Element 4
BYTE

4 1 2 3 4

 TELL
<TELL token-commands ...>

Print formatted text to screen. There is a set built-in tokens that can be replaced with
TELL-TOKENS or expanded with ADD-TELL-TOKENS.

The built-in tokens are:

Pattern Form Description

(CR CRLF) <CRLF> Print CR

D * <PRINTD .X> Print object-description

N * <PRINTN .X> Print number

C * <PRINTC .X> Print character

B * <PRINTB .X> Print unpacked-string

Example:

<TELL "You have " N ,SCORE " points." CR>
--> "You have 42 points.\n"

- 172 -

 THROW
<THROW value stack-frame>

Zapf syntax Inform syntax
THROW throw

Versions: 5-

Used in conjunction with CATCH. THROW sets the stack to stack-frame and returns value (the
result is that execution returns from the routine where the stack-frame was "caught" with
value as the routines return value. Also see CATCH.

Example:

<ROUTINE TEST-CATCH ("AUX" X)
<SET X <CATCH>>
<THROWER .X>
123

>

<ROUTINE THROWER (F)
<THROW 456 .F>

>

<TEST-CATCH> --> 456

 USL
<USL>

Zapf syntax Inform syntax
USL show_status

Versions: 3

Update status line. In other versions than 3 this command is ignored.

 VALUE
<VALUE name/number>

Zapf syntax Inform syntax
VALUE load

All versions

Load name/number. Command is mostly redundant and rarely used.

Examples:

<VALUE X> --> Loads local or global variable X. Recommended

- 173 -

to use LVAL or GVAL instead (.X or ,X)

 VERIFY
<VERIFY>

Zapf syntax Inform syntax
VERIFY verify

All versions

Returns true if sum($0040:PLENTH (byte 26-27 in header)) MOD $10000 = PCHKSUM (byte
28-29 in header), otherwise false.

 VERSION?
<VERSION? (name/number expressions...)...>

VERSION? Lets the game use different logic depending on which version the game is compiled in.
The version is read from ZVERSION (byte 0-1) in the header. Valid name/number are:

3 ZIP
4 EZIP
5 XZIP
6 YZIP
7
8

ELSE/T

Example:

<VERSION?
(ZIP <SET X 1> <SET Y 1>)
(XZIP <SET X 2> <SET Y 2>)
(ELSE <SET X 3> <SET Y 2>)

>

 WINATTR
<WINATTR window-number flags operation>

Zapf syntax Inform syntax
WINATTR window_style

Versions: 6-

Change flags for window-number. The flags are:
Bit 0: Keep text inside margins
Bit 1: Scroll when reaching bottom
Bit 2: Copy text to stream 2 (printer)
Bit 3: Buffer text and word-wrap

The opertions are:

- 174 -

0: Set to flags
1: Set bits supplied (BOR)
2: Clear bits supplied
3: Reverse bits supplied

 WINGET
<WINGET window-number property>

Zapf syntax Inform syntax
WINGET get_wind_prop

Versions: 6-

Reads property on window-number.

 WINPOS
<WINPOS window-number row column>

Zapf syntax Inform syntax
WINPOS move_window

Versions: 6-

Move window-number to position row column (pixels). (1, 1) is in the top left corner.

 WINPUT
<WINPUT window-number property value>

Zapf syntax Inform syntax
WINPUT put_wind_prop

Versions: 6-

Writes value to property window-number.

 WINSIZE
<WINSIZE window-number height width>

Zapf syntax Inform syntax
WINSIZE window_size

Varsions: 6-

Changes size on window-number.

 XPUSH
<XPUSH value stack>

- 175 -

Zapf syntax Inform syntax
XPUSH push_stack

Versions: 6-

Push value on stack.

Example:

<GLOBAL MY-STACK <TABLE 1 0 0 0>>
<XPUSH 123 ,MY-STACK> --> MY-STACK <TABLE 2 0 123 0>

 ZWSTR
<ZWSTR src-table length offset dest-table>

Zapf syntax Inform syntax
ZWSTR encode_text

Varsions: 5-

Encode length characters starting at offset from ZSCII word zscii-text and stores result
in 6-byte Z-encoded dest-table.

Example:

<GLOBAL SRCBUF <TABLE (STRING) "hello">>
<GLOBAL DSTBUF <TABLE 0 0 0>>

<ZWSTR ,SRCBUF 5 1 ,DSTBUF>
<PRINTB ,DSTBUF> --> "hello"

- 176 -

 Appendix A: Other Z-machine OP-codes
These OP-codes don't have direct ZIL-equivalent (they are used to call routines and control the
program counter).

Sources:

The Z-Machine Standards Document, Graham Nelson

ZAPF syntax Inform Syntax Description (Z specifikations 1.0)

CALL1 call_1s Executes routine() and stores resulting return value.

CALL2 call_2s Executes routine(arg1) and stores resulting return value.

CALL call_vs The only call instruction in Version 3. It calls the routine
with 0, 1, 2 or 3 arguments as supplied and stores the
resulting return value. (When the address 0 is called as a
routine, nothing happens and the return value is false.)

ICALL1 call_1n Executes routine() and throws away the result.

ICALL2 call_2n Executes routine(arg1) and throws away the result.

ICALL call_vn Like CALL, but throws away the result.

IXCALL call_vn2 CALL with a variable number (from 0 to 7) of arguments,
then throw away the result. This (and call_vs2) uniquely
have an extra byte of opcode types to specify the types of
arguments 4 to 7. Note that it is legal to use these
opcodes with fewer than 4 arguments (in which case the
second byte of type information will just be $FF).

JUMP jump Jump (unconditionally) to the given label. (This is not a
branch instruction and the operand is a 2-byte signed
offset to apply to the program counter.) It is legal for this
to jump into a different routine (which should not change
the routine call state), although it is considered bad
practice to do so and the Txd disassembler is confused by
it.

NOOP nop Probably the official "no operation" instruction, which,
appropriately, was never operated (in any of the Infocom
datafiles): it may once have been a breakpoint.

XCALL call_vs2 Like IXCALL, but stores the resulting value.

 Appendix B – Field-spec for header
The information here is mostly from The Z-Machine Standards Document, Graham Nelson and
ZILF Source Code. See The Z-Machine Standards Document for a more detailed discussion. The
field-spec is used in LOWCORE and LOWCORE-TABLE.

- 177 -

 Ordinary header
Field-spec Byte Ver R/W Description

ZVERSION 0-1 1- R Byte 0 Version number

1-3 - Byte 1 Flag 1

R Bit 1: Status line type: 0=score/turns, 1=hh:mm

R Bit 2: Story file split over two discs

R Bit 3: Tandy-bit

R Bit 4: Status line not available

R Bit 5: Screen-splitting available

R Bit 6: Is a proportional font the default

4- - *01 Flag 1

R Bit 0: Colors available

R Bit 1: Picture displaying available

R Bit 2: Bold available

R Bit 3: Italic available

R Bit 4: Monospace (fixed) font available

R Bit 5: Sound effects available

R Bit 7: Timed keyboard input available

ZORKID/RELEASEID 2-3 1- R Release number (word).
Note: Traditionally in Infocom only 11 bits are
used for release-id (binary and *3777*). That
suggests that the higher 5 bits sometime was
used or reserved for other information.

ENDLOD 4-5 1- R Base of high memory (byte address)

START 6-7 1-5 R Initial value of program counter (byte address)

6 R Packed address of initial "main" routine

VOCAB 8-9 1- R Location of dictionary (byte address)

OBJECT *10-11 1- R Location of object table (byte address)

GLOBALS *12-13 1- R Location of global variables table(byte address)

PURBOT *14-15 1- R Base of static memory (byte address)

FLAGS *16-17 - - Flags 2:

1- R/W Bit 0: Set when transcripting is on

3- R/W Bit 1: Set to force printing in monospace font

6- R/W Bit 2: Int sets to request screen redraw, game

- 178 -

clears when it complies with this

5- R Bit 3: If set, game wants to use pictures

3 R Bit 4: Amigs ver of "The Lurking Horror" sets
this probably sound.

5- R Bit 4: If set, game wants to use UNDO

5- R Bit 5: If set, game wants to use mouse

5- R Bit 6:If set, game wants to use colors

5- R Bit 7: If set, game wants to use sound

6 R Bit 8: If set, game wants to use menu

SERIAL 18-19 3- R Serial number,YY-part

SERI1 20-21 3- R Serial number,MM-part

SERI2 22-23 3- R Serial number,DD-part

FWORDS 24-25 2- R Location of abbreviations table (byte address)

PLENTH 26-27 3- R Length of file

PCHKSUM 28-29 3- R File checksum

INTWRD 30-31 4- R Interpreter number and version

INTID 30 4- R Interpreter number

INTVER 31 4- R Interpreter version

SCRWRD 32-33 4- R Screen width and height

SCRV 32 4- R Screen height(lines), 255 = infinite

SCRH 33 4- R Screen width (characters)

HWRD 34-35 5- R Screen width in units

VWRD 36-37 5- R Screen height in units

FWRD 38-39 - R Font width and height

38 5 R Font width in units (width of '0')

6- R Font height in units

39 5 R Font height in units

6- R Font width in units (width of '0')

LMRG / FOFF 40-41 5- R Routines offset (divided by 8)

RMRG / SOFF 42-43 5 R Static strings offset(divided by 8)

CLRWRD 44-45 5- R Default background and foreground color

44 5- R Default background color

45 5- R Default foreground color

- 179 -

TCHARS 46-47 5- R Address of terminating characters table (bytes)

CRCNT 48-49 5 R/W ???

TWID 48-49 6- R Total width in pixels of text sent to output
stream 3

CRFUNC /STDREV 50-51 1- R/W Standard revision number

CHRSET 52-53 5- R Alphabet table address (bytes), or 0 for default

EXTAB 54-55 5- R Header extension table address (bytes)

 Extended header
Field-spec Byte Ver R/W Description

0-1 - R Number of further words in table

MSLOCX 2-3 5- R X-coordinate of mouse after a click

MSLOCY 4-5 5- R Y-coordinate of mouse after a click

MSETBL / UNITBL 6-7 5- R/W Unicode translation table (optional)

MSEDIR / FLAGS3 8-9 5- R/W Flags 3: Bit 0: If set, game wants to use
transparency

MSEINV / TRUFGC 10-11 5- R/W True default foreground colour

MSEVRB / TRUBGC 12-13 5- R/W True default background colour

MSEWRD 14-15 5- R/W

BUTTON 16-17 5- R/W

JOYSTICK 18-19 5- R/W

BSTAT 20-21 5- R/W

JSTAT 22-23 5- R/W

- 180 -

 Appendix C - Reserved constants, globals & locals
Name Type Default value Description

CRLF-CHARACTER GVAL |

DO-FUNNY-RETURNS? GVAL <> Versions 3-4
T Versions 5-

FALSE-VALUE CONSTANT 0

FATAL-VALUE CONSTANT 2

IN-ZILCH COMPILATION-FLAG <>

NEW-PARSER? GVAL Not defined <SETG
NEW-PARSER T>
to use new
parser

NEW-SFLAGS GVAL

PRESERVE-SPACES? GVAL <>

REDEFINE LVAL <>

SENTENCE-ENDS? FILE-FLAG

VERBS GVAL Table
containing verb
syntax
information.

ACTIONS GVAL Table of
action-routines
connected to
different verb
syntaxes.

PREACTIONS GVAL Table of
preaction-routi
nes connected
to different
verb syntaxes.

LAST-OBJECT CONSTANT The compiler
sets this to
the # of the
last object.

- 181 -

 Appendix D - Structure of vocabulary, verbs, syntax, prepositions,
actions and preactions tables; and the new parser

Vocabulary table
The vocabulary table starts at the address stored in VOCAB in the header. The structure is

1 byte Number of word separator, or break characters
1 byte Word seperator #1, ASCII value
.
.
.
1 byte Word separator #n, ASCII value
2 bytes Number of entries in the vocabulary. A Positive

number means that the entries are sorted, a
negative that they are not.

— Entry for word #1 in vocabulary —
4/6 bytes Entry #1, z-chars for vocabulary word #1.

Version 1-3: 4 bytes
Version 4- : 6 bytes

1 byte extra byte #1 for entry #1
.
.
.
1 byte extra byte #n for entry #1
— End of entry #1 —
.
.
.
Entry for word #n in vocabulary

For the standard parser the vocabulary has 3 extra bytes for each entry, making each entry 7 bytes
(version 1-3) or 9 bytes (version 4-) in the vocabulary where the first extra byte contains the words
part of speech and the other two a word number for its part of speech. These extra bytes will
hereafter be called PoS, V1 and V2.

PoS uses bit 0-1 for information on how the word numbers are stored in V1 and V2; and bit 2-7
stores information on what part of speech the word belongs to.

Bits in PoS
0 Bit 0-1 = 0 P1?OBJECT None, preposition, buzzword or
1 noun number stored in V1.

= 1 P1?VERB Verb number stored in V1.
= 2 P1?ADJECTIVE Adjective number stored in V1

(v1-3).
= 3 P1?DIRECTION Direction number stored in V1.

2 PS?BUZZWORD 4 Buzzword
3 PS?PREPOSITION 8 Preposition

- 182 -

4 PS?DIRECTION 16 Direction
5 PS?ADJECTIVE 32 Adjective
6 PS?VERB 64 Verb
7 PS?OBJECT 128 Noun

Example (version 3 game):
26 9C CC A5 1B 1A FB
Byte 0-3 The word “down” in z-characters
Byte 4 PoS: 3 P1?DIRECTION, direction number in V1

8 PS?PREPOSITION
16 PS?DIRECTION

Byte 5 V1: 26 Direction number
Byte 6 V2: 251 Preposition number

The word numbers are numbered starting at 255 and downwards for each part of speech and are
used to identify synonyms and to reference the word in, for example, an object definition. The word
number for nouns (objects) is never used but is traditionally set to 1.

This put a limitation at two on how many parts of speech a word could belong to and from version 4
the word number for adjectives are dropped (adjectives are set free and no longer counts against the
limit of two). The drawback being that adjectives now don’t have synonyms and require more
storage space when referenced.

One can also set the nouns free so it doesn’t count against the limit by setting the global
NEW-VOC? to true, allowing a word to be an adjective, noun and verb all at once.

Setting COMPACT-VOCABULARY? to true will remove the extra byte V2 and lower the limit to one
but also set nouns, buzzwords and prepositions free so they don’t count against this lower limit (a
word can no longer be both a direction and a verb).

Every entry in the vocabulary gets a constant defined in the form W?<WORD>, for example
W?TAKE, that is available to the code.

Verbs table
This is a table of pointers that contains addresses for the start of a verb's syntax lines. The first entry
is for verb number 255 and the second for verb number 254, and so on.

This table is accessible from the code with the defined constant VERBS.

Syntax table
The first byte for each verb contains the number of syntax lines for that verb, followed by entries of
8 bytes for each syntax line.

1 byte Number of syntax lines for verb #255
— Syntax line #1 for verb #255 —
1 byte NOBJ Number of objects for this syntax
1 byte PREP1 Preposition 1 (0 if none)
1 byte PREP2 Preposition 2 (0 if none)

- 183 -

1 byte FIND1 1st objects FIND
1 byte FIND2 2nd objects FIND
1 byte OPTS1 1st objects search options
1 byte OPTS2 2nd objects search options
1 byte ACTION Points to row in actions/preactions table
— End of syntax line #1 —
.
.
.
Entry for syntax line #n for verb #255
Entry for syntax lines for verb #254
.
.
.
Entry for syntax lines for verb #n

PREP1 and PREP2 contain the preposition number before each object, 0 if there is no preposition.
If COMPACT-VOCABULARY? is set the number stored in PREP1 and PREP2 points to an entry in
the preposition table, instead of the preposition number.

FIND1 and FIND2 specify required flagbits for object 1 and 2 respectively, for example (FIND
TAKEBIT). Set to 0 if no flagbit is required.

OPTS1 and OPTS2 define the search scope and other options for the respective objects.

Bits in OPTS
0 1 Unused
1 2 HAVE, WINNER must (indirectly) hold the object
2 4 MANY, Multiple objects allowed
3 8 TAKE, Attempt implicit take
4 16 ON-GROUND, search scope for object
5 32 IN-ROOM, search scope for object
6 64 CARRIED, search scope for object
7 128 HELD, search scope for object

Note: Zilf doesn’t distinguish between ON-GROUND/IN-ROOM and CARRIED/HELD. Default is
that bit 4-7 all are set.

Example:
Verb: GET
04 02 00 FA 2E 2A 34 30 06

<SYNTAX GET OBJECT (FIND TAKEBIT) (MANY ON-GROUND IN-ROOM)
ON OBJECT (FIND SURFACEBIT) (ON-GROUND IN-ROOM)
= V-TAKE>

02 00 F3 2E 2A 34 30 06
<SYNTAX GET OBJECT (FIND TAKEBIT) (MANY ON-GROUND IN-ROOM)

FROM OBJECT (FIND SURFACEBIT) (ON-GROUND IN-ROOM)
= V-TAKE>

01 00 00 2E 00 34 F0 06

- 184 -

<SYNTAX GET OBJECT (FIND TAKEBIT) (MANY ON-GROUND IN-ROOM)
= V-TAKE>

01 FF 00 2F 00 20 F0 05
<SYNTAX GET IN OBJECT (FIND DOORBIT) (IN-ROOM) = V-ENTER>

Verb: QUIT
01 00 00 00 00 00 F0 F0 07 <SYNTAX QUIT = V-QUIT>

With the global COMPACT-SYNTAXES? set, the syntax table uses another more compact way
where each syntax line is of variable length depending on how many objects that are involved.

The first byte on each syntax line contains the number of objects, NOBJ in bit 6-7 and the first
preposition, PREP1 in bits 0-5 (only bits 0-5 of the preposition number is stored, bits 6-7 are
considered to be set, for example the preposition number FF only stores 3F . The second byte
contains the ACTION. Then if number of objects = 0; the syntax line ends here. If the number of
objects > 0, the third byte contains FIND1 and the fourth byte OPTS1. If the number of objects > 1,
the fifth byte contains PREP2 and the sixth and seventh byte FIND2 and OPTS2.

This means that each syntax line can be either 2, 4 or 7 bytes long when COMPACT-SYNTAXES? is
used..

Example (same verbs as above):
Verb: GET
04 80 06 2e 34 3a 2a 30 GET OBJECT ON OBJECT = V-TAKE

80 06 2e 34 33 2a 30 GET OBJECT FROM OBJECT = V-TAKE
40 06 2e 34 GET OBJECT = V-TAKE
7f 05 2f 20 GET IN OBJECT = V-ENTER

Verb: QUIT
01 00 07 QUIT = V-QUIT

Every entry in the vocabulary gets a constant defined in the form ST?<VERB>, for example
ST?TAKE, that is available to the code.

Actions table
This is a table of pointers that contains the packed addresses for the start of a verb's action routine
pointed to by the ACTION in the syntax tables syntax lines. The length of the table is the number of
actions multiplied by 2.

This table is accessible from the code with the defined constant ACTIONS.

Preactions table
This is a table of pointers that contains the packed addresses for the start of a verb's preaction
routine pointed to by the ACTION in the syntax tables syntax lines. The length of the table is the
same as for the actions table, i.e. the number of actions multiplied by 2.

This table is accessible from the code with the defined constant PREACTIONS.

- 185 -

Prepositions table
This is a lookup table for the prepositions. The first two bytes in the table contain the number of
prepositions in the table. Then for each preposition there is an entry of two 2-bytes words (i.e. 4
bytes), where the first word contains the address to the preposition in the vocabulary and the second
word contains the preposition number.

If COMPACT-VOCABULARY? is set, only a byte is used for the preposition number, reducing the
size of each entry to 3 bytes.

This table is accessible from the code with the defined constant PREPOSITIONS.

Parser in Infocom version 6 games, the “new parser”
When Infocom introduced its graphics format (version 6, YZIP), it also introduced a new parser
format. The new parser format is only used in three released games (Arthur, Shogun and Zork Zero)
and also exist in some unreleased games (Abyss, Milliways). This new format uses a completely
different structure but the basic elements are still there.

With the NEW-PARSER? set, the compiler relies on a couple of user-provided functions and globals
to supply ADD-WORD and NEW-ADD-WORD with values for parts of speech and other values.

<GET-CLASSIFICATION type>
<MAKE-VWORD name class flags>

Hereafter we will explore how it is used in the released games from Infocom.

The vocabulary is declared as a table, VWORD that have the following fields:

6 bytes LEXICAL-WORD, the z-characters
2 bytes SEMANTIC-STUFF
0 or 2 bytes FLAGS
1 or 2 bytes CLASSIFICATION-NUMBER (parts of speech)

The SEMANTIC-STUFF has different meanings depending on the CLASSIFICATION-NUMBER.
If the CLASSIFICATION-NUMBER is 0 and SEMANTIC-STUFF is non-zero, it points to a word
of which this word is a synonym. For a verb, it's the pointer to the verb data structure. For a
direction, the high byte is the direction ID (thus a word can't be both a verb and a direction). In all
other cases, it's either 0 or a pointer to a related word (e.g., the singular word of which this is the
plural).

If FLAGS use 0 or 2 bytes, it is controlled by the compilation-flag WORD-FLAGS-IN-TABLE. The
default value in the environment is for this flag to be true so normally the word flag values are
stored in a table, WORD-FLAG-TABLE. The first 2-byte word in the table holds the length of the
table (in words), each entry is a 2-byte word pointer to the word in the vocabulary and then a 2-byte
word with its flags. All of the released games have their word flags in a table, none use the option
to store them in the vocabulary. Examples of word flags are:

FIRST-PERSON 8

- 186 -

PLURAL-FLAG 16
SECOND-PERSON 32
THIRD-PERSON 64
PRESENT-TENSE 256
PAST-TENSE 512
FUTURE-TENSE 1024
POSSESSIVE 16384
THING-PNF 8192
DONT-ORPHAN 32768
DEFAULT-OBJECT 65536

The compilation-flag ONE-BYTE-PARTS-OF-SPEECH controls if
CLASSIFICATION-NUMBER is 1 or 2 bytes. Zork Zero uses 1 byte, the other two uses 2 bytes.

Unfortunately the CLASSIFICATION-NUMBER isn’t consistent over the games, as seen in this
table:

Zork Zero Shogun Arthur Milliways
VERB 1 1 1 1
NOUN 2 2 2 2
ADJ 4 4 4 4
QUANT 144 8 16 16
DIR 8 32 64 64
MISCWORD 160 16 32 32
TOBE - 64 128 128
QWORD - 128 256 256
CANDO - 256 512 512
COMMA 132 8192 1024 1024
PARTICLE 16 1024 2048 2048
PREP 32 2048 4096 4096
ASKWORD 64 4096 8192 8192
APOSTR - 16384 - 16384
OFWORD 129 32769 - 32769
ARTICLE - 32770 - 32770
QUOTE 130 32772 16384 32772
ADV 136 - 8 8

The CLASSIFICATION-NUMBER and its order is done in the game by calling the function
TERMINALS with the appropriate parts of speech. When a part of speech id is “bigger” than its
allotted size (1 or 2 bytes) it is packed. When the highest bit in CLASSIFICATION-NUMBER (bit
7 for byte or bit 15 for word) is set, it means that it is packed. If we look at Zork Zero the values
129, 130, 132, 136, 144 and 160 are all packed id:s and are unpacked by bitwise and with 0x3F and
a bitwise shift left by 7.

(129 & 0x3F) << 7 = 128
(130 & 0x3F) << 7 = 256
(132 & 0x3F) << 7 = 512
…
(160 & 0x3F) << 7 = 4096

- 187 -

The NEW-PARSER? was primarily used for version 6 games but could of course be used in other
versions too. For ZIP (version 3) there are some variations, though.The first three fields are the
same, except that the LEXICAL-WORD is four bytes instead of 6. The semantic-stuff is less
overloaded, in that it never contains verb data. Instead, that's in an extra slot at the end. The
semantic-stuff has all the same properties, except that the low byte is the adjective ID, if present.

The verb data structure, or the syntax tables is a table with verb data entries of a fixed length of 8
bytes. The SEMANTIC-STUFF on a verb in the vocabulary points to the address of its entry in the
verb table. Each entry have the following format:

AA AA BB BB CC CC DD DD

A. 0xFFFF (-1) for no action or points to position in action-/pre-action-table for verb action without
any objects.
B. 0, if absent, or pointing to a vocabulary word (preposition) for action without object.
C. 0, if absent, or pointing to the address of definitions of action with one object.
D. 0, if absent, or pointing to the address of definitions of action with two objects.

All the syntaxes for a verb are stored in two tables, one for the one object case, the other for the two
object case. Each table contains a length word, the number of entries in the table, and N entries,
either 6 or 10 bytes long (for the one object and the two object case, respectively). Each syntax line
for the one object case (6 bytes) are formatted

AA AA BB BB CC DD

A. Action/pre-action index for this item.
B. 0, if absent, or pointing to a vocabulary word (preposition) for this object.
C. FIND1, 0 or required flagbit for this object.
D. SEARCH-FLAGS for this object.

The case for two objects (10 bytes) are the same but B, C and D are repeated for the second object.

The released games all use a new set of SEARCH-FLAGS defined in the constant NEW-SFLAGS.

ON-GROUND 1
[OFF-GROUND] 2 Not explicitly defined in NEW-SFLAGS
ROOM 3 ON-GROUND+OFF-GROUND
IN-ROOM 3 Synonym to above
HELD 4
[POCKETS] 8 Not explicitly defined in NEW-SFLAGS
CARRIED 12 HELD+POCKETS
ALL 15 ROOM+CARRIED
MANY 16 Additive flag: always present
TAKE 32 Additive flag: always present
HAVE 64 Additive flag: always present
EVERYWHERE 128
MOBY 128
ADJACENT 192

- 188 -

The actions and preactions table have the same format as in the earlier parser.

- 189 -

