Help on module world_model:

NAME
world_model - World and Concept classes for instantiation by interactive fictions.

FILE
c:\nickmontfort-curveship-814de6e\world model.py

CLASSES
__builtin__ .object
WorldOrConcept
Concept
World

class Concept(WorldOrConcept)
| An Actor's theory or model of the World, which can be used in telling.

Method resolution order:
Concept
WorldOrConcept
__builtin__.object

Methods defined here:

__init_ (self, item_list, actions, cosmos=None)

I
I
I
I
I
I
I
I
I
I
| copy_at(self, time)

| Return a new Concept based on this one, but from an earlier time.
I

I

I

I

I

I

I

I

I

I

item_at(self, tag, time)
Return the Item from this moment in the Concept.

roll back_to(self, time)
Go back to a previous state of this Concept.

update_item(self, item, time)
After perception, change an Item within this Concept.

Methods inherited from WorldOrConcept:
__str__(self)

I
I
I
I
| accessible(self, actor)

| List all Items an Item can access.
|

I

I

I

I

ancestors(self, tag)
List all Items hierarchically above an Item.

compartment_of(self, tag)



Return the opaque compartment around the Item.

descendants(self, tag, stop='bottom')
List all Items hierarchically under "tag".

If stop="bottom', descend all the way. If stop='closed', go to down to
closed children, but not inside those; for stop='opaque', stop at
opaque ones.

doors(self, tag)
Returns a list of the Item's Doors; [] if there are none.

has(self, category, tag)
Does the tag represent an Item of this category in this World/Concept?

Return a list: the cosmos, the Room of the agent, (living) contents.

These are all the Items that can prevent or react to an Action by
the agent of the action. If the Item has an "alive" feature, it is only
added if alive is True.

A special case: If the agent has configured itself to a new Room, the
new Room and (living) contents have a chance to respond, too.

room_of(self, tag)
If the Item exists and is in a Room, return the Room.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

| respondents(self, action)
I

I

I

I

I

I

I

I

I

I

I

I

| show _descendants(self, tag, padding='")
| Return the tree rooted at this Item.
I

Data descriptors inherited from WorldOrConcept:

I
I
| _ dict

| dictionary for instance variables (if defined)
I

I

I

__weakref__
list of weak references to the object (if defined)

class World(WorldOrConcept)
| The simulated world; it has Items and Actions.

I

| Method resolution order:
| World

| WorldOrConcept

| __builtin__.object

I

I

I

Methods defined here:



__init_ (self, fiction)

advance_clock(self, duration)
Move the time forward a specified number of ticks.

back_up_clock(self, target_time)
Roll the time back to a particular tick.

can_see(self, actor, tag)
Is the item identified by "tag" visible to "actor"?

light level(self, tag)
Determines the light level (not just glow) in the Item's compartment.

light within(self, tag)
Returns the light illuminating an Item, inherently and within.

prevents_sight(self, actor, tag)
Returns a reason (if there are any) that "actor" cannot see "tag".

reset(self)
Revert the World and Concepts to their initial states.

set_concepts(self, actors)
Set initial information in all Actors' Concepts.

transfer(self, item, actor, time)
Place an appropriate version of an Item in the Actor's Concept.

transfer_out(self, item, actor, time)
Remove the Item from the Actor's Concept.

undo(self, action_id)
Revert the World back to the start time of the specified Action.

Methods inherited from WorldOrConcept:
__str__(self)

accessible(self, actor)
List all Items an Item can access.

ancestors(self, tag)
List all Items hierarchically above an Item.

compartment_of(self, tag)
Return the opaque compartment around the Item.

descendants(self, tag, stop='bottom')



List all Items hierarchically under "tag".
If stop='bottom', descend all the way. If stop='closed', go to down to
closed children, but not inside those; for stop='opaque', stop at

opaque ones.

doors(self, tag)
Returns a list of the Item's Doors; [] if there are none.

has(self, category, tag)
Does the tag represent an Item of this category in this World/Concept?

respondents(self, action)
Return a list: the cosmos, the Room of the agent, (living) contents.

These are all the Items that can prevent or react to an Action by
the agent of the action. If the Item has an "alive" feature, it is only

added if alive is True.

A special case: If the agent has configured itself to a new Room, the
new Room and (living) contents have a chance to respond, too.

room_of(self, tag)
If the Item exists and is in a Room, return the Room.

show_descendants(self, tag, padding='")
Return the tree rooted at this Item.
Data descriptors inherited from WorldOrConcept:

I
I
| _ dict

| dictionary for instance variables (if defined)
I

|

|

__weakref__
list of weak references to the object (if defined)

class WorldOrConcept(__builtin__.object)
| Abstract base class for the World and for Concepts.

Methods defined here:

__init_ (self, item_list, actions)

accessible(self, actor)

I

I

I

I

I

| __str_ (self)
I

I

| List all Items an Item can access.
I

I

ancestors(self, tag)



List all Items hierarchically above an Item.

compartment_of(self, tag)
Return the opaque compartment around the Item.

descendants(self, tag, stop='bottom')
List all Items hierarchically under "tag".

If stop='bottom', descend all the way. If stop='closed', go to down to
closed children, but not inside those; for stop='opaque', stop at
opaque ones.

doors(self, tag)
Returns a list of the Item's Doors; [] if there are none.

has(self, category, tag)
Does the tag represent an Item of this category in this World/Concept?

respondents(self, action)
Return a list: the cosmos, the Room of the agent, (living) contents.

These are all the Items that can prevent or react to an Action by
the agent of the action. If the Item has an "alive" feature, it is only
added if alive is True.

A special case: If the agent has configured itself to a new Room, the
new Room and (living) contents have a chance to respond, too.

room_of(self, tag)
If the Item exists and is in a Room, return the Room.

show_descendants(self, tag, padding='")
Return the tree rooted at this Item.

Data descriptors defined here:

__dict__
dictionary for instance variables (if defined)

__weakref__
list of weak references to the object (if defined)

FUNCTIONS
check_for_reserved_tags(items)
Raise an error if a reserved tag, such as @cosmos, is in the list.

sight_culprit(prominence, view, 1lit)
Which of the three factors is mostly to blame for the lack of visibility?



DATA

__author__ = 'Nick Montfort’
__copyright__ = 'Copyright 2011 Nick Montfort'
__license__ = "ISC'
__status__ = 'Development’
__version__ = '0.5.0.0'
VERSION
0.5.0.0

AUTHOR
Nick Montfort



